Author:
Zhong Jing,Xiang Qing,Massa Letícia O,Qu Fanyao,Morais Paulo C,Liu Wenzhong
Abstract
Abstract
The low-field (below 5 Oe) ac and dc magnetic response of a magnetic fluid [MF] sample in the range of 305 to 360 K and 410 to 455 K was experimentally and theoretically investigated. We found a systematic deviation of Curie's law, which predicts a linear temperature dependence of inverse initial susceptibility in the range of our investigation. This finding, as we hypothesized, is due to the onset of a second-order-like cluster-to-monomer transition with a critical exponent which is equal to 0.50. The susceptibility data were well fitted by a modified Langevin function, in which cluster dissociation into monomers, at the critical temperature [T*], was included. In the ac experiments, we found that T* was reducing from 381.8 to 380.4 K as the frequency of the applied field increases from 123 to 173 Hz. In addition, our ac experiments confirm that only monomers respond for the magnetic behavior of the MF sample above T*. Furthermore, our Monte Carlo simulation and analytical results support the hypothesis of a thermal-assisted dissociation of chain-like structures.
PACS: 75.75.-C; 75.30.Kz; 75.30.Cr.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献