1. M. Sajjadi, M. Javanmardi, T. Tasdizen, in Advances in Neural Information Processing Systems, vol. 29, ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Regularization with stochastic transformations and perturbations for deep semi-supervised learning (Curran Associates, Inc., 2016), Barcelona, pp. 1163–1171.
2. S. Laine, T. Aila, in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Temporal ensembling for semi-supervised learning (OpenReview.net, 2017). https://openreview.net/forum?id=BJ6oOfqge. Accessed 11 Aug 2022
3. T. Miyato, S. -i. Maeda, M. Koyama, S. Ishii, Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning (2018). http://arxiv.org/abs/1704.03976. Accessed 11 Aug 2022
4. Y. Grandvalet, Y. Bengio, in Advances in Neural Information Processing Systems, vol. 17, ed. by L. Saul, Y. Weiss, and L. Bottou. Semi-supervised learning by entropy minimization (MIT Press, 2005), Vancouver, pp. 529–536.
5. D. -H. Lee, Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proc. ICML 2013 Workshop: Challenges in Representation Learning (WREPL), Atlanta.