Comparison of semi-supervised deep learning algorithms for audio classification

Author:

Cances Léo,Labbé Etienne,Pellegrini ThomasORCID

Abstract

AbstractIn this article, we adapted five recent SSL methods to the task of audio classification. The first two methods, namely Deep Co-Training (DCT) and Mean Teacher (MT), involve two collaborative neural networks. The three other algorithms, called MixMatch (MM), ReMixMatch (RMM), and FixMatch (FM), are single-model methods that rely primarily on data augmentation strategies. Using the Wide-ResNet-28-2 architecture in all our experiments, 10% of labeled data and the remaining 90% as unlabeled data for training, we first compare the error rates of the five methods on three standard benchmark audio datasets: Environmental Sound Classification (ESC-10), UrbanSound8K (UBS8K), and Google Speech Commands (GSC). In all but one cases, MM, RMM, and FM outperformed MT and DCT significantly, MM and RMM being the best methods in most experiments. On UBS8K and GSC, MM achieved 18.02% and 3.25% error rate (ER), respectively, outperforming models trained with 100% of the available labeled data, which reached 23.29% and 4.94%, respectively. RMM achieved the best results on ESC-10 (12.00% ER), followed by FM which reached 13.33%. Second, we explored adding the mixup augmentation, used in MM and RMM, to DCT, MT, and FM. In almost all cases, mixup brought consistent gains. For instance, on GSC, FM reached 4.44% and 3.31% ER without and with mixup. Our PyTorch code will be made available upon paper acceptance at https://github.com/Labbeti/SSLH.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Reference46 articles.

1. M. Sajjadi, M. Javanmardi, T. Tasdizen, in Advances in Neural Information Processing Systems, vol. 29, ed. by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Regularization with stochastic transformations and perturbations for deep semi-supervised learning (Curran Associates, Inc., 2016), Barcelona, pp. 1163–1171.

2. S. Laine, T. Aila, in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Temporal ensembling for semi-supervised learning (OpenReview.net, 2017). https://openreview.net/forum?id=BJ6oOfqge. Accessed 11 Aug 2022

3. T. Miyato, S. -i. Maeda, M. Koyama, S. Ishii, Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning (2018). http://arxiv.org/abs/1704.03976. Accessed 11 Aug 2022

4. Y. Grandvalet, Y. Bengio, in Advances in Neural Information Processing Systems, vol. 17, ed. by L. Saul, Y. Weiss, and L. Bottou. Semi-supervised learning by entropy minimization (MIT Press, 2005), Vancouver, pp. 529–536.

5. D. -H. Lee, Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Proc. ICML 2013 Workshop: Challenges in Representation Learning (WREPL), Atlanta.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3