Language agnostic missing subtitle detection

Author:

Gupta HoneyORCID,Sharma Mayank

Abstract

AbstractSubtitles are a crucial component of Digital Entertainment Content (DEC such as movies and TV shows) localization. With ever increasing catalog (≈ 2M titles) and localization expansion (30+ languages), automated subtitle quality checks becomes paramount. Being a manual creation process, subtitles can have errors such as missing transcriptions, out-of-sync subtitle blocks with the audio and incorrect translations. Such erroneous subtitles result in an unpleasant viewing experience and impact the viewership. Moreover, manual correction is laborious, highly costly and requires expertise of audio and subtitle languages. A typical subtitle correction process consists of (1) linear watch of the movie, (2) identification of time stamps associated with erroneous subtitle blocks, and (3) correcting procedure. Among the three, time taken to watch the entire movie by a human expert is the most time consuming step. This paper discusses the problem of missing transcription, where the subtitle blocks corresponding to some speech segments in the DEC are non-existent. We present a solution to augment human correction process by automatically identifying the timings associated with the non-transcribed dialogues in a language agnostic manner. The correction step can then be performed by either human-in-the-loop mechanism or automatically using neural transcription (speech-to-text in same language) and translation (text-to-text in different languages) engines. Our method uses a language agnostic neural voice activity detector (VAD) and an audio classifier (AC) trained explicitly on DEC corpora for better generalization. The method consists of three steps: first, we use VAD to identify the timings associated with dialogues (predicted speech blocks). Second, we refine those timings using the AC module by removing the timings associated with the leading and trailing non-speech segments identified as speech by VAD. Finally, we compare the predicted dialogue timings to the dialogue timings present in the subtitle file (subtitle speech blocks) and flag the missing transcriptions. We empirically demonstrate that the proposed method (a) reduces incorrect predicted missing subtitle timings by 10%, (b) improves the predicted missing subtitle timings by 2.5%, (c) reduces false positive rate (FPR) of overextending the predicted timings by 77%, and (d) improves the predicted speech block-level precision by a 119% over VAD baseline on a human-annotated dataset of missing subtitle speech blocks.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Reference36 articles.

1. L. Mateju, P. Cerva, J. Zdánský, J. Málek, in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017. Speech activity detection in online broadcast transcription using deep neural networks and weighted finite state transducers, (2017), pp. 5460–5464. https://doi.org/10.1109/ICASSP.2017.7953200.

2. I. Jang, C. Ahn, J. Seo, Y. Jang, in Interspeech 2017, 18th Annual Conference of the International Speech Communication Association, Stockholm, Sweden, August 20-24, 2017. Enhanced feature extraction for speech detection in media audio, (2017), pp. 479–483. http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0792.html. Accessed 24 June 2021.

3. X. Zhang, D. Wang, Boosting contextual information for deep neural network based voice activity detection. IEEE ACM Trans. Audio Speech Lang. Process.24(2), 252–264 (2016). https://doi.org/10.1109/TASLP.2015.2505415.

4. I. Hwang, H. Park, J. Chang, Ensemble of deep neural networks using acoustic environment classification for statistical model-based voice activity detection. Comput. Speech Lang.38:, 1–12 (2016). https://doi.org/10.1016/j.csl.2015.11.003.

5. K. Choi, G. Fazekas, M. B. Sandler, in Proceedings of the 17th International Society for Music Information Retrieval Conference, ISMIR 2016, New York City, United States, August 7-11, 2016, ed. by M. I. Mandel, J. Devaney, D. Turnbull, and G. Tzanetakis. Automatic tagging using deep convolutional neural networks, (2016), pp. 805–811. https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/009_Paper.pdf. Accessed 24 June 2021.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3