Abstract
AbstractIn this paper, we propose a supervised single-channel speech enhancement method that combines Kullback-Leibler (KL) divergence-based non-negative matrix factorization (NMF) and a hidden Markov model (NMF-HMM). With the integration of the HMM, the temporal dynamics information of speech signals can be taken into account. This method includes a training stage and an enhancement stage. In the training stage, the sum of the Poisson distribution, leading to the KL divergence measure, is used as the observation model for each state of the HMM. This ensures that a computationally efficient multiplicative update can be used for the parameter update of this model. In the online enhancement stage, a novel minimum mean square error estimator is proposed for the NMF-HMM. This estimator can be implemented using parallel computing, reducing the time complexity. Moreover, compared to the traditional NMF-based speech enhancement methods, the experimental results show that our proposed algorithm improved the short-time objective intelligibility and perceptual evaluation of speech quality by 5% and 0.18, respectively.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Acoustics and Ultrasonics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献