Piano score rearrangement into multiple difficulty levels via notation-to-notation approach

Author:

Suzuki MasahiroORCID

Abstract

AbstractMusical score rearrangement is an emerging area in symbolic music processing, which aims to transform a musical score into a different style. This study focuses on the task of changing the playing difficulty of piano scores, addressing two challenges in musical score rearrangement. First, we address the challenge of handling musical notation on scores. While symbolic music research often relies on note-level (MIDI-equivalent) information, musical scores contain notation that cannot be adequately represented at the note level. We propose an end-to-end framework that utilizes tokenized representations of notation to directly rearrange musical scores at the notation level. We also propose the ST+ representation, which includes a novel structure and token types for better score rearrangement. Second, we address the challenge of rearranging musical scores across multiple difficulty levels. We introduce a difficulty conditioning scheme to train a single sequence model capable of handling various difficulty levels, while leveraging scores from various levels in model training. We collect commercial-quality pop piano scores at four difficulty levels and train a MEGA model (with 0.3M parameters) to rearrange between these levels. Objective evaluation shows that our method successfully rearranges piano scores into other three difficulty levels, achieving comparable difficulty to human-made scores. Additionally, our method successfully generates musical notation including articulations. Subjective evaluation (by score experts and musicians) also reveals that our generated scores generally surpass the quality of previous rule-based or note-level methods on several criteria. Our framework enables novel notation-to-notation processing of scores and can be applied to various score rearrangement tasks.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3