Microphone utility estimation in acoustic sensor networks using single-channel signal features

Author:

Günther MichaelORCID,Brendel Andreas,Kellermann Walter

Abstract

AbstractIn multichannel signal processing with distributed sensors, choosing the optimal subset of observed sensor signals to be exploited is crucial in order to maximize algorithmic performance and reduce computational load, ideally both at the same time. In the acoustic domain, signal cross-correlation is a natural choice to quantify the usefulness of microphone signals, i.e., microphone utility, for coherent array processing, but its estimation requires that the uncoded signals are synchronized and transmitted between nodes. In resource-constrained environments like acoustic sensor networks, low data transmission rates often make transmission of all observed signals to the centralized location infeasible, thus discouraging direct estimation of signal cross-correlation. Instead, we employ characteristic features of the recorded signals to estimate the usefulness of individual microphone signals using the Magnitude-Squared Coherence (MSC) between the source and respective microphone signal as ground-truth metric. In this contribution, we provide a comprehensive analysis of model-based microphone utility estimation approaches that use signal features and, as an alternative, also propose machine learning-based estimation methods that identify optimal sensor signal utility features. The performance of both approaches is validated experimentally using both simulated and recorded acoustic data, comprising a variety of realistic and practically relevant acoustic scenarios including moving and static sources.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3