Deep semantic learning for acoustic scene classification

Author:

Shao Yun-Fei,Ma Xin-Xin,Ma Yong,Zhang Wei-QiangORCID

Abstract

AbstractAcoustic scene classification (ASC) is the process of identifying the acoustic environment or scene from which an audio signal is recorded. In this work, we propose an encoder-decoder-based approach to ASC, which is borrowed from the SegNet in image semantic segmentation tasks. We also propose a novel feature normalization method named Mixup Normalization, which combines channel-wise instance normalization and the Mixup method to learn useful information for scene and discard specific information related to different devices. In addition, we propose an event extraction block, which can extract the accurate semantic segmentation region from the segmentation network, to imitate the effect of image segmentation on audio features. With four data augmentation techniques, our best single system achieved an average accuracy of 71.26% on different devices in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 ASC Task 1A dataset. The result indicates a minimum margin of 17% against the DCASE 2020 challenge Task 1A baseline system. It has lower complexity and higher performance compared with other state-of-the-art CNN models, without using any supplementary data other than the official challenge dataset.

Funder

National Key R &D Program of China

National Natural Science Foundation of China

Guoqiang Institute, Tsinghua University

Publisher

Springer Science and Business Media LLC

Reference61 articles.

1. D. Barchiesi, D. Giannoulis, D. Stowell, M. Plumbley, Acoustic scene classification: classifying environments from the sounds they produce. IEEE Signal Process. Mag. 32(3), 16–34 (2015)

2. Y. Han, J. Park, Convolutional neural networks with binaural representations and background subtraction for acoustic scene classification. Tech. Rep., DCASE 2017 Challenge (2017)

3. H. Zeinali, L. Burget, J. Cernocky, in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018). Convolutional neural networks and x-vector embedding for DCASE2018 acoustic scene classification challenge (Zenodo, Geneve, 2018)

4. Y. Sakashita, M. Aono, Acoustic scene classifification by ensemble of spectrograms based on adaptive temporal divisions. Tech. Rep., DCASE 2018 Challenge (2018)

5. DCASE. Detection and classification of acoustic scenes and events 2020 task 1a (2020), https://dcase.community/challenge2020/task-acoustic-scene-classification-results-a

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harmonizing Emotions: A Novel Approach to Audio Emotion Classification using Log-Melspectrogram with Augmentation;2024 International Conference on Communication, Computing and Internet of Things (IC3IoT);2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3