A recursive expectation-maximization algorithm for speaker tracking and separation

Author:

Schwartz Ofer,Gannot SharonORCID

Abstract

AbstractThe problem of blind and online speaker localization and separation using multiple microphones is addressed based on the recursive expectation-maximization (REM) procedure. A two-stage REM-based algorithm is proposed: (1) multi-speaker direction of arrival (DOA) estimation and (2) multi-speaker relative transfer function (RTF) estimation. The DOA estimation task uses only the time frequency (TF) bins dominated by a single speaker while the entire frequency range is not required to accomplish this task. In contrast, the RTF estimation task requires the entire frequency range in order to estimate the RTF for each frequency bin. Accordingly, a different statistical model is used for the two tasks. The first REM model is applied under the assumption that the speech signal is sparse in the TF domain, and utilizes a mixture of Gaussians (MoG) model to identify the TF bins associated with a single dominant speaker. The corresponding DOAs are estimated using these bins. The second REM model is applied under the assumption that the speakers are concurrently active in all TF bins and consequently applies a multichannel Wiener filter (MCWF) to separate the speakers. As a result of the assumption of the concurrent speakers, a more precise TF map of the speakers’ activity is obtained. The RTFs are estimated using the outputs of the MCWF-beamformer (BF), which are constructed using the DOAs obtained in the previous stage. Next, using the linearly constrained minimum variance (LCMV)-BF that utilizes the estimated RTFs, the speech signals are separated. The algorithm is evaluated using real-life scenarios of two speakers. Evaluation of the mean absolute error (MAE) of the estimated DOAs and the separation capabilities, demonstrates significant improvement w.r.t. a baseline DOA estimation and speaker separation algorithm.

Funder

H2020 European Institute of Innovation and Technology

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3