Sound field reconstruction using neural processes with dynamic kernels

Author:

Liang Zining,Zhang WenORCID,Abhayapala Thushara D.

Abstract

AbstractAccurately representing the sound field with high spatial resolution is crucial for immersive and interactive sound field reproduction technology. In recent studies, there has been a notable emphasis on efficiently estimating sound fields from a limited number of discrete observations. In particular, kernel-based methods using Gaussian processes (GPs) with a covariance function to model spatial correlations have been proposed. However, the current methods rely on pre-defined kernels for modeling, requiring the manual identification of optimal kernels and their parameters for different sound fields. In this work, we propose a novel approach that parameterizes GPs using a deep neural network based on neural processes (NPs) to reconstruct the magnitude of the sound field. This method has the advantage of dynamically learning kernels from data using an attention mechanism, allowing for greater flexibility and adaptability to the acoustic properties of the sound field. Numerical experiments demonstrate that our proposed approach outperforms current methods in reconstructing accuracy, providing a promising alternative for sound field reconstruction.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference60 articles.

1. A. Plinge, S.J. Schlecht, O. Thiergart, T. Robotham, O. Rummukainen, E.A. Habets, in Audio Engineering Society Conference: 2018 AES International Conference on Audio for Virtual and Augmented Reality, Six-degrees-of-freedom binaural audio reproduction of first-order ambisonics with distance information (Audio Engineering Society, 2018)

2. M. Cobos, J. Ahrens, K. Kowalczyk, A. Politis, An overview of machine learning and other data-based methods for spatial audio capture, processing, and reproduction. EURASIP J. Audio Speech Music Process. 2022(1), 1–21 (2022)

3. I.B. Witew, M. Vorländer, N. Xiang, Sampling the sound field in auditoria using large natural-scale array measurements. J. Acoust. Soc. Am. 141(3), EL300–EL306 (2017)

4. S. Koyama, T. Nishida, K. Kimura, T. Abe, N. Ueno, J. Brunnström, in 2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Meshrir: A dataset of room impulse responses on meshed grid points for evaluating sound field analysis and synthesis methods (IEEE, 2021), pp. 1–5

5. M.S. Kristoffersen, M.B. Møller, P. Martínez-Nuevo, J. Østergaard, Deep sound field reconstruction in real rooms: introducing the isobel sound field dataset. (2021). arXiv preprint arXiv:2102.06455

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3