Time-domain adaptive attention network for single-channel speech separation

Author:

Wang KunpengORCID,Zhou Hao,Cai Jingxiang,Li Wenna,Yao Juan

Abstract

AbstractRecent years have witnessed a great progress in single-channel speech separation by applying self-attention based networks. Despite the excellent performance in mining relevant long-sequence contextual information, self-attention networks cannot perfectly focus on subtle details in speech signals, such as temporal or spectral continuity, spectral structure, and timbre. To tackle this problem, we proposed a time-domain adaptive attention network (TAANet) with local and global attention network. Channel and spatial attention are introduced in local attention networks to focus on subtle details of the speech signals (frame-level features). In the global attention networks, a self-attention mechanism is used to explore the global associations of the speech contexts (utterance-level features). Moreover, we model the speech signal serially using multiple local and global attention blocks. This cascade structure enables our model to focus on local and global features adaptively, compared with other speech separation feature extraction methods, further boosting the separation performance. Versus other end-to-end speech separation methods, extensive experiments on benchmark datasets demonstrate that our approach obtains a superior result. (20.7 dB of SI-SNRi and 20.9 dB of SDRi on WSJ0-2mix).

Funder

National Key R &D Program of China

Sichuan Science and Technology Program

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-channel Speech Separation Based on Double-density Dual-tree CWT and SNMF;Annals of Emerging Technologies in Computing;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3