A neural network-supported two-stage algorithm for lightweight dereverberation on hearing devices

Author:

Lemercier Jean-MarieORCID,Thiemann Joachim,Koning Raphael,Gerkmann Timo

Abstract

AbstractA two-stage lightweight online dereverberation algorithm for hearing devices is presented in this paper. The approach combines a multi-channel multi-frame linear filter with a single-channel single-frame post-filter. Both components rely on power spectral density (PSD) estimates provided by deep neural networks (DNNs). By deriving new metrics analyzing the dereverberation performance in various time ranges, we confirm that directly optimizing for a criterion at the output of the multi-channel linear filtering stage results in a more efficient dereverberation as compared to placing the criterion at the output of the DNN to optimize the PSD estimation. More concretely, we show that training this stage end-to-end helps further remove the reverberation in the range accessible to the filter, thus increasing the early-to-moderate reverberation ratio. We argue and demonstrate that it can then be well combined with a post-filtering stage to efficiently suppress the residual late reverberation, thereby increasing the early-to-final reverberation ratio. This proposed two-stage procedure is shown to be both very effective in terms of dereverberation performance and computational demands, as compared to, e.g., recent state-of-the-art DNN approaches. Furthermore, the proposed two-stage system can be adapted to the needs of different types of hearing-device users by controlling the amount of reduction of early reflections.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Integrated Deep Learning Model for Concurrent Speech Dereverberation and Denoising;Journal of Advances in Information Technology;2024

2. USDnet: Unsupervised Speech Dereverberation via Neural Forward Filtering;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3