Generating chord progression from melody with flexible harmonic rhythm and controllable harmonic density

Author:

Wu Shangda,Yang Yue,Wang Zhaowen,Li Xiaobing,Sun Maosong

Abstract

AbstractMelody harmonization, which involves generating a chord progression that complements a user-provided melody, continues to pose a significant challenge. A chord progression must not only be in harmony with the melody, but also interdependent on its rhythmic pattern. While previous neural network-based systems have been successful in producing chord progressions for given melodies, they have not adequately addressed controllable melody harmonization, nor have they focused on generating harmonic rhythms with flexibility in the rates or patterns of chord changes. This paper presents AutoHarmonizer, a novel system for harmonic density-controllable melody harmonization with such a flexible harmonic rhythm. AutoHarmonizer is equipped with an extensive vocabulary of 1462 chord types and can generate chord progressions that vary in harmonic density for a given melody. Experimental results indicate that the AutoHarmonizer-generated chord progressions exhibit a diverse range of harmonic rhythms and that the system’s controllable harmonic density is effective.

Funder

National Social Science Fund of China

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. A. Liu, L. Zhang, Y. Mei, B. Han, Z. Cai, Z. Zhu, J. Xiao, in MMPT@ICMR2021: Proceedings of the 2021 Workshop on Multi-Modal Pre-Training for Multimedia Understanding, Taipei, Taiwan, August 21, 2021, ed. by B. Liu, J. Fu, S. Chen, Q. Jin, A.G. Hauptmann, Y. Rui. Residual recurrent CRNN for end-to-end optical music recognition on monophonic scores (ACM, 2021), pp. 23–27. https://doi.org/10.1145/3463945.3469056

2. J. Calvo-Zaragoza, D. Rizo, in Proceedings of the 19th International Society for Music Information Retrieval Conference, ISMIR 2018, Paris, France, September 23-27, 2018, ed. by E. Gómez, X. Hu, E. Humphrey, E. Benetos. Camera-primus: Neural end-to-end optical music recognition on realistic monophonic scores (2018), pp. 248–255. http://ismir2018.ircam.fr/doc/pdfs/33_Paper.pdf

3. D. Ghosal, M.H. Kolekar, in Interspeech 2018, 19th Annual Conference of the International Speech Communication Association, Hyderabad, India, 2-6 September 2018, ed. by B. Yegnanarayana. Music genre recognition using deep neural networks and transfer learning (ISCA, 2018), pp. 2087–2091. https://doi.org/10.21437/Interspeech.2018-2045

4. E. Dervakos, N. Kotsani, G. Stamou, in Artificial Intelligence in Music, Sound, Art and Design - 10th International Conference, EvoMUSART 2021, Held as Part of EvoStar 2021, Virtual Event, April 7-9, 2021, Proceedings, Lecture Notes in Computer Science, vol. 12693, ed. by J. Romero, T. Martins, N. Rodríguez-Fernández. Genre recognition from symbolic music with cnns (Springer, 2021), pp. 98–114. https://doi.org/10.1007/978-3-030-72914-1_7

5. J. Briot, G. Hadjeres, F. Pachet, Deep learning techniques for music generation - A survey. CoRR abs/1709.01620 (2017), accessed on November 27, 2023. @article{DBLP:journals/corr/abs-1709-01620,

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3