Cascade algorithms for combined acoustic feedback cancelation and noise reduction

Author:

Ruiz SantiagoORCID,van Waterschoot Toon,Moonen Marc

Abstract

AbstractThis paper presents three cascade algorithms for combined acoustic feedback cancelation (AFC) and noise reduction (NR) in speech applications. A prediction error method (PEM)-based adaptive feedback cancelation (PEM-based AFC) algorithm is used for the AFC stage, while a multichannel Wiener filter (MWF) is applied for the NR stage. A scenario with M microphones and 1 loudspeaker is considered, without loss of generality. The first algorithm is the baseline algorithm, namely the cascade M-channel rank-1 MWF and PEM-AFC, where a NR stage is performed first using a rank-1 MWF followed by a single-channel AFC stage using a PEM-based AFC algorithm. The second algorithm is the cascade $$(M+1)$$ ( M + 1 ) -channel rank-2 MWF and PEM-AFC, where again a NR stage is applied first followed by a single-channel AFC stage. The novelty of this algorithm is to consider an ($$M+1$$ M + 1 )-channel data model in the MWF formulation with two different desired signals, i.e., the speech component in the reference microphone signal and in the loudspeaker signal, both defined by the speech source signal but not equal to each other. The two desired signal estimates are later used in a single-channel PEM-based AFC stage. The third algorithm is the cascade M-channel PEM-AFC and rank-1 MWF where an M-channel AFC stage is performed first followed by an M-channel NR stage. Although in cascade algorithms where NR is performed first and then AFC the estimation of the feedback path is usually affected by the NR stage, it is shown here that by performing a rank-2 approximation of the speech correlation matrix this issue can be avoided and the feedback path can be correctly estimated. The performance of the algorithms is assessed by means of closed-loop simulations where it is shown that for the considered input signal-to-noise ratios (iSNRs) the cascade $$(M+1)$$ ( M + 1 ) -channel rank-2 MWF and PEM-AFC and the cascade M-channel PEM-AFC and rank-1 MWF algorithms outperform the cascade M-channel rank-1 MWF and PEM-AFC algorithm in terms of the added stable gain (ASG) and misadjustment (Mis) as well as in terms of perceptual metrics such as the short-time objective intelligibility (STOI), perceptual evaluation of speech quality (PESQ), and signal distortion (SD).

Funder

Onderzoeksraad, KU Leuven

Fonds De La Recherche Scientifique - FNRS

Fonds Wetenschappelijk Onderzoek

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technology-forcing to reduce environmental noise pollution: a prospectus;Journal of Exposure Science & Environmental Epidemiology;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3