Abstract
AbstractIn this paper, we propose a novel feature compensation algorithm based on independent noise estimation, which employs a Gaussian mixture model (GMM) with fewer Gaussian components to rapidly estimate the noise parameters from the noisy speech and monitor the noise variation. The estimated noise model is combined with a GMM with sufficient Gaussian mixtures to produce the noisy GMM for the clean speech estimation so that parameters are updated if and only if the noise variation occurs. Experimental results show that the proposed algorithm can achieve the recognition accuracy similar to that of the traditional GMM-based feature compensation, but significantly reduces the computational cost, and thereby is more useful for resource-limited mobile devices.
Funder
National Natural Science Foundation of China
Major Project of Natural Science Foundation of Jiangsu Education Department
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Acoustics and Ultrasonics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献