An overview of machine learning and other data-based methods for spatial audio capture, processing, and reproduction

Author:

Cobos Maximo,Ahrens JensORCID,Kowalczyk Konrad,Politis Archontis

Abstract

AbstractThe domain of spatial audio comprises methods for capturing, processing, and reproducing audio content that contains spatial information. Data-based methods are those that operate directly on the spatial information carried by audio signals. This is in contrast to model-based methods, which impose spatial information from, for example, metadata like the intended position of a source onto signals that are otherwise free of spatial information. Signal processing has traditionally been at the core of spatial audio systems, and it continues to play a very important role. The irruption of deep learning in many closely related fields has put the focus on the potential of learning-based approaches for the development of data-based spatial audio applications. This article reviews the most important application domains of data-based spatial audio including well-established methods that employ conventional signal processing while paying special attention to the most recent achievements that make use of machine learning. Our review is organized based on the topology of the spatial audio pipeline that consist in capture, processing/manipulation, and reproduction. The literature on the three stages of the pipeline is discussed, as well as on the spatial audio representations that are used to transmit the content between them, highlighting the key references and elaborating on the underlying concepts. We reflect on the literature based on a juxtaposition of the prerequisites that made machine learning successful in domains other than spatial audio with those that are found in the domain of spatial audio as of today. Based on this, we identify routes that may facilitate future advancement.

Funder

national science centre

erdf

ministerio de ciencia, innovación y universidades

generalitat valenciana

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3