Sparse coding of the modulation spectrum for noise-robust automatic speech recognition

Author:

Ahmadi Sara,Ahadi Seyed Mohammad,Cranen Bert,Boves Lou

Abstract

Abstract The full modulation spectrum is a high-dimensional representation of one-dimensional audio signals. Most previous research in automatic speech recognition converted this very rich representation into the equivalent of a sequence of short-time power spectra, mainly to simplify the computation of the posterior probability that a frame of an unknown speech signal is related to a specific state. In this paper we use the raw output of a modulation spectrum analyser in combination with sparse coding as a means for obtaining state posterior probabilities. The modulation spectrum analyser uses 15 gammatone filters. The Hilbert envelope of the output of these filters is then processed by nine modulation frequency filters, with bandwidths up to 16 Hz. Experiments using the AURORA-2 task show that the novel approach is promising. We found that the representation of medium-term dynamics in the modulation spectrum analyser must be improved. We also found that we should move towards sparse classification, by modifying the cost function in sparse coding such that the class(es) represented by the exemplars weigh in, in addition to the accuracy with which unknown observations are reconstructed. This creates two challenges: (1) developing a method for dictionary learning that takes the class occupancy of exemplars into account and (2) developing a method for learning a mapping from exemplar activations to state posterior probabilities that keeps the generalization to unseen conditions that is one of the strongest advantages of sparse coding.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Reference41 articles.

1. Drullman R, Festen JM, Plomp R: Effect of temporal envelope smearing on speech reception. J. Acoust. Soc. Am 1994, 95: 1053-1064. 10.1121/1.408467

2. H Hermansky, in Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding. The modulation spectrum in the automatic recognition of speech (Santa Barbara, 14–17 December 1997), pp. 140–147.

3. Xiao X, Chng ES, Li H: Normalization of the speech modulation spectra for robust speech recognition. IEEE Trans. Audio Speech Lang. Process 2008, 16(8):1662-1674. 10.1109/TASL.2008.2002082

4. JK Thompson, LE Atlas, in Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing, 5. A non-uniform modulation transform for audio coding with increased time resolution (Hong Kong, 6–10 April 2003), pp. 397–400.

5. Paliwal K, Schwerin B, Wójcicki K: Role of modulation magnitude and phase spectrum towards speech intelligibility. Speech Commun 2011, 53(3):327-339. 10.1016/j.specom.2010.10.004

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3