Heterogeneous separation consistency training for adaptation of unsupervised speech separation

Author:

Han Jiangyu,Long YanhuaORCID

Abstract

AbstractRecently, supervised speech separation has made great progress. However, limited by the nature of supervised training, most existing separation methods require ground-truth sources and are trained on synthetic datasets. This ground-truth reliance is problematic, because the ground-truth signals are usually unavailable in real conditions. Moreover, in many industry scenarios, the real acoustic characteristics deviate far from the ones in simulated datasets. Therefore, the performance usually degrades significantly when applying the supervised speech separation models to real applications. To address these problems, in this study, we propose a novel separation consistency training, termed SCT, to exploit the real-world unlabeled mixtures for improving cross-domain unsupervised speech separation in an iterative manner, by leveraging upon the complementary information obtained from heterogeneous (structurally distinct but behaviorally complementary) models. SCT follows a framework using two heterogeneous neural networks (HNNs) to produce high confidence pseudo labels of unlabeled real speech mixtures. These labels are then updated and used to refine the HNNs to produce more reliable consistent separation results for real mixture pseudo-labeling. To maximally utilize the large complementary information between different separation networks, a cross-knowledge adaptation is further proposed. Together with simulated dataset, those real mixtures with high confidence pseudo labels are then used to update the HNN separation models iteratively. In addition, we find that combing the heterogeneous separation outputs by a simple linear fusion can further slightly improve the final system performance. In this paper, we use cross-dataset to simulate the cross-domain situation in real-life. The term of “source domain” and “target domain” refer to the simulation set for model pre-training and the real unlabeled mixture for model adaptation. The proposed SCT is evaluated on both public reverberant English and anechoic Mandarin cross-domain separation tasks. Results show that, without any available ground-truth of target domain mixtures, the SCT can still significantly outperform our two strong baselines with up to 1.61 dB and 3.44 dB scale-invariant signal-to-noise ratio (SI-SNR) improvements, on the English and Mandarin cross-domain conditions, respectively.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative Adversarial Networks for Heterogeneous Unsupervised Domain Adaptation Detection;2024 IEEE 28th International Conference on Intelligent Engineering Systems (INES);2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3