Stripe-Transformer: deep stripe feature learning for music source separation

Author:

Qian Jiale,Liu Xinlu,Yu Yi,Li WeiORCID

Abstract

AbstractMusic source separation (MSS) is to isolate musical instrument signals from the given music mixture. Stripes widely exist in music spectrograms, which potentially indicate high-level music information. For example, a vertical stripe indicates a drum time and a horizontal stripe indicates a harmonic component such as a singing voice. These stripe features actually affect the performance of MSS systems, which has not been explicitly explored by previous MSS studies. In this paper, we propose stripe-Transformer, a deep stripe feature learning method for MSS with a Transformer-based architecture. Stripe-wise self-attention mechanism is designed to capture global dependencies along the time and frequency axis in music spectrograms. Experimental results on the Musdb18 dataset show that our proposed model reaches an average source-to-distortion (SDR) of 6.71dB on four target sources, achieving state-of-the-art performance with fewer parameters. And the visualization results show the capability of the proposed model to extract beat and harmonic structure in music signals.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3