Significance of relative phase features for shouted and normal speech classification

Author:

Phapatanaburi Khomdet,Wang LongbiaoORCID,Liu Meng,Nakagawa Seiichi,Jumphoo Talit,Uthansakul Peerapong

Abstract

AbstractShouted and normal speech classification plays an important role in many speech-related applications. The existing works are often based on magnitude-based features and ignore phase-based features, which are directly related to magnitude information. In this paper, the importance of phase-based features is explored for the detection of shouted speech. The novel contributions of this work are as follows. (1) Three phase-based features, namely, relative phase (RP), linear prediction analysis estimated speech-based RP (LPAES-RP) and linear prediction residual-based RP (LPR-RP) features, are explored for shouted and normal speech classification. (2) We propose a new RP feature, called the glottal source-based RP (GRP) feature. The main idea of the proposed GRP feature is to exploit the difference between RP and LPAES-RP features to detect shouted speech. (3) A score combination of phase- and magnitude-based features is also employed to further improve the classification performance. The proposed feature and combination are evaluated using the shouted normal electroglottograph speech (SNE-Speech) corpus. The experimental findings show that the RP, LPAES-RP, and LPR-RP features provide promising results for the detection of shouted speech. We also find that the proposed GRP feature can provide better results than those of the standard mel-frequency cepstral coefficient (MFCC) feature. Moreover, compared to using individual features, the score combination of the MFCC and RP/LPAES-RP/LPR-RP/GRP features yields an improved detection performance. Performance analysis under noisy environments shows that the score combination of the MFCC and the RP/LPAES-RP/LPR-RP features gives more robust classification. These outcomes show the importance of RP features in distinguishing shouted speech from normal speech.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3