Differential growth factor regulation of aspartyl-(asparaginyl)-β-hydroxylase family genes in SH-Sy5y human neuroblastoma cells

Author:

Lahousse Stephanie A,Carter Jade J,Xu Xaolai J,Wands Jack R,de la Monte Suzanne M

Abstract

Abstract Background Aspartyl (asparaginyl)-β-hydroxylase (AAH) hydroxylates Asp and Asn residues within EGF-like domains of Notch and Jagged, which mediate cell motility and differentiation. This study examines the expression, regulation and function of AAH, and its related transcripts, Humbug and Junctin, which lack catalytic domains, using SH-Sy5y neuroblastoma cells. Results Real time quantitative RT-PCR demonstrated 8- or 9-fold higher levels of Humbug than AAH and Junctin, and lower levels of all 3 transcripts in normal human brains compared with neuroblastic tumor cells. AAH and Humbug expression were significantly increased in response to insulin and IGF-I stimulation, and these effects were associated with increased directional motility. However, over-expression of AAH and not Humbug significantly increased motility. Treatment with chemical inhibitors of Akt, Erk MAPK, or cyclin-dependent kinase 5 (Cdk-5) significantly reduced IGF-I stimulated AAH and Humbug expression and motility relative to vehicle-treated control cells. In addition, significantly increased AAH and Humbug expression and directional motility were observed in cells co-transfected with Cdk-5 plus its p35 or p25 regulatory partner. Further studies demonstrated that activated Cdk-5 mediated its stimulatory effects on AAH through Erk MAPK and PI3 kinase. Conclusion AAH and Humbug are over-expressed in SH-Sy5y neuroblastoma cells, and their mRNAs are regulated by insulin/IGF-1 signaling through Erk MAPK, PI3 kinase-Akt, and Cdk-5, which are known mediators of cell migration. Although AAH and Humbug share regulatory signaling pathways, AAH and not Humbug mediates directional motility in SH-Sy5y neuroblastoma cells.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3