Author:
Liu Wei,Xu Ge Z,Jiang Chun H,Tian Jie
Abstract
Abstract
Background
Microglial activation and the proinflammatory response are controlled by a complex regulatory network. Among the various candidates, macrophage colony-stimulating factor (M-CSF) is considered an important cytokine. The up-regulation of M-CSF and its receptor CSF-1R has been reported in brain disease, as well as in diabetic complications; however, the mechanism is unclear. An elevated level of glycated albumin (GA) is a characteristic of diabetes; thus, it may be involved in monocyte/macrophage-associated diabetic complications.
Results
The basal level of expression of M-CSF/CSF-1R was examined in retinal microglial cells in vitro. Immunofluorescence, real-time PCR, immunoprecipitation, and Western blot analyses revealed the up-regulation of CSF-1R in GA-treated microglial cells. We also detected increased expression and release of M-CSF, suggesting that the cytokine is produced by activated microglia via autocrine signaling. Using an enzyme-linked immunosorbent assay, we found that GA affects microglial activation by stimulating the release of tumor necrosis factor-α and interleukin-1β. Furthermore, the neutralization of M-CSF or CSF-1R with antibodies suppressed the proinflammatory response. Conversely, this proinflammatory response was augmented by the administration of M-CSF.
Conclusions
We conclude that GA induces microglial activation via the release of proinflammatory cytokines, which may contribute to the inflammatory pathogenesis of diabetic retinopathy. The increased microglial expression of M-CSF/CSF-1R not only is a response to microglial activation in diabetic retinopathy but also augments the microglial inflammation responsible for the diabetic microenvironment.
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Barber AJ, Antonetti DA, Kern TS, Reiter CE, Soans RS, Krady JK, Levison SW, Gardner TW, Bronson SK: The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci. 2005, 46: 2210-2218. 10.1167/iovs.04-1340.
2. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW: Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes. 2005, 54: 1559-1565. 10.2337/diabetes.54.5.1559.
3. Rungger-Brändle E, Dosso AA, Leuenberger PM: Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000, 41: 1971-1980.
4. Zeng HY, Green WR, Tso MO: Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008, 126: 227-232. 10.1001/archophthalmol.2007.65.
5. Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007, 8: 57-69. 10.1038/nrn2038.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献