Author:
Sun Ye,Su Li,Wang Zhongxiao,Xu Yi,Xu Xun
Abstract
Abstract
Background
The goal of this study was to investigate the anti-angiogenic activity of a novel peptide H-RN, derived from the hepatocyte growth factor kringle 1 domain (HGF K1), in a mouse model of corneal neovascularization. The anti-angiogenic effect of H-RN on vascular endothelial growth factor (VEGF)-stimulated cell proliferation, cell migration and endothelial cell tube formation was assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVECs) and in vivo using a mouse cornea micropocket assay. Apoptosis and cell cycle arrest were assessed by flow cytometry. A scrambled peptide was used as a negative control.
Results
H-RN effectively inhibited VEGF-stimulated HUVEC proliferation, migration and tube formation on Matrigel, while a scrambled peptide exerted no effect. In the mouse model of corneal angiogenesis, VEGF-stimulated angiogenesis was significantly inhibited by H-RN compared to a scrambled peptide that had no such activity. VEGF protected HUVECs from apoptosis, while H-RN inhibited this protective effect of VEGF. VEGF significantly increased the proportion of cells in the S phase compared to control treated cells (p<0.05). Treatment with H-RN (1.5 mM) induced the accumulation of cells in G0/G1 phase, while the proportion of cells in the S phase and G2/M phase decreased significantly compared to control group (p<0.05).
Conclusions
H-RN has anti-angiogenic activity in HUVECs and in a mouse model of VEGF-induced corneal neovascularization. The anti-angiogenic activity of H-RN was related to apoptosis and cell cycle arrest, indicating a potential strategy for anti-angiogenic treatment in the cornea.
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Biswas PS, Rouse BT: Early events in HSV keratitis–setting the stage for a blinding disease. Microbes Infect. 2005, 7: 799-810. 10.1016/j.micinf.2005.03.003.
2. Bock F, Konig Y, Dietrich T, Zimmermann P, Baier M, Cursiefen C: Inhibition of angiogenesis in the anterior chamber of the eye. Ophthalmologe. 2007, 104: 336-344. 10.1007/s00347-007-1512-2.
3. Scorcia V, Busin M: Survival of mushroom keratoplasty performed in corneas with postinfectious vascularized scars. Am J Ophthalmol. 2012, 153: 44-50. 10.1016/j.ajo.2011.05.020.
4. Li N, Wang X, Wan P, Huang M, Wu Z, Liang X, Liu Y, Ge J, Huang J, Wang Z: Tectonic lamellar keratoplasty with acellular corneal stroma in high-risk corneal transplantation. Mol Vis. 2011, 17: 1909-1917.
5. Han ES, Wee WR, Lee JH, Kim MK: Long-term outcome and prognostic factor analysis for keratolimbal allografts. Graefes Arch Clin Exp Ophthalmol. 2011, 249: 1697-1704. 10.1007/s00417-011-1760-3.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献