BMSCs reduce rat granulosa cell apoptosis induced by cisplatin and perimenopause

Author:

Guo Jun-qi,Gao Xia,Lin Zhi-jie,Wu Wei-zhen,Huang Liang-hu,Dong Hui-yue,Chen Jin,Lu Jun,Fu Yun-fen,Wang Jin,Ma Yu-jie,Chen Xiao-wen,Wu Zhi-xian,He Fu-qiang,Yang Shun-liang,Liao Lian-ming,Zheng Feng,Tan Jian-ming

Abstract

Abstract Background The objective of this study was to evaluate the effect of bone marrow mesenchymal stem cells (BMSCs) on the apoptosis of granulosa cells (GCs) in rats. BMSCs and GCs were isolated from rats. GCs were separated into one of the following three groups: an untreated control group (control), a cisplatin (5 mg/L) treatment group (cisplatin), and group co-cultured with BMSCs and treated with cisplatin (BMSC). GC apoptosis was analyzed by annexin V staining and real-time PCR analysis for apoptosis-related genes. The effect of BMSCs was also determined in 9 to 10 month-old perimenopausal rats that were separated into the following groups: saline control, BMSC transplantation (1–2 × 106 cells), and estrogen treatment (0.158 mg/kg/d) groups. A young group consisting of 3 to 4 month-old rats that were treated with saline was also evaluated as a control. After 1 and 3 months, GC apoptosis was evaluated by TUNEL analysis. Results Cisplatin increased GC apoptosis from 0.59% to 13.04% in the control and cisplatin treatment groups, respectively, which was significantly reduced upon co-culture with BMSCs to 4.84%. Cisplatin treatment increased p21 and bax and decreased c-myc mRNA expression, which was reversed upon co-culture with BMSCs. As compared to young rats, increased apoptosis was observed in the perimenopausal rats (P < 0.001). After 3 months, the apoptosis rate in the BMSC group was significantly lower than that of the control group (P = 0.007). Conclusions BMSC therapy may protect against GC apoptosis induced by cisplatin and perimenopause. Further studies are necessary to evaluate therapeutic efficacy of BMSCs.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3