Sirtuin-mediated nuclear differentiation and programmed degradation in Tetrahymena

Author:

Slade Kristin M,Freggiaro Sydney,Cottrell Kyle A,Smith Joshua J,Wiley Emily A

Abstract

AbstractBackgroundThe NAD+-dependent histone deacetylases, known as "sirtuins", participate in a variety of processes critical for single- and multi-cellular life. Recent studies have elucidated the importance of sirtuin activity in development, aging, and disease; yet, underlying mechanistic pathways are not well understood. Specific sirtuins influence chromatin structure and gene expression, but differences in their pathways as they relate to distinct chromatin functions are just beginning to emerge. To further define the range of global chromatin changes dependent on sirtuins, unique biological features of the ciliated protozoanTetrahymena thermophilacan be exploited. This system offers clear spatial and temporal separation of multiple whole genome restructuring events critical for the life cycle.ResultsInhibition with nicotinamide revealed that sirtuin deacetylase activity inTetrahymenacells promotes chromatin condensation during meiotic prophase, differentiation of heterochromatin from euchromatin during development, and chromatin condensation/degradation during programmed nuclear death. We identified a class I sirtuin, called Thd14, that resides in mitochondria and nucleoli during vegetative growth, and forms a large sub-nuclear aggregate in response to prolonged cell starvation that may be peripherally associated with nucleoli. During sexual conjugation and development Thd14 selectively concentrates in the parental nucleus prior to its apoptotic-like degradation.ConclusionsSirtuin activity is important for several functionally distinct events requiring global chromatin condensation. Our findings suggest a novel role for sirtuins in promoting programmed pycnosis by acting on chromatin destined for degradation. The sirtuin Thd14, which displays physiological-dependent differential localization within the nucleus, is a candidate for a chromatin condensation enzyme that is coupled to nuclear degradation.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3