The role of Drosophila Merlin in spermatogenesis

Author:

Dorogova Natalia V,Akhmametyeva Elena M,Kopyl Sergei A,Gubanova Natalia V,Yudina Olga S,Omelyanchuk Leonid V,Chang Long-Sheng

Abstract

Abstract Background Drosophila Merlin, the homolog of the human Neurofibromatosis 2 (NF2) gene, is important for the regulation of cell proliferation and receptor endocytosis. Male flies carrying a Mer 3 allele, a missense mutation (Met177→Ile) in the Merlin gene, are viable but sterile; however, the cause of sterility is unknown. Results Testis examination reveals that hemizygous Mer 3 mutant males have small seminal vesicles that contain only a few immotile sperm. By cytological and electron microscopy analyses of the Mer 3, Mer 4 (Gln170→stop), and control testes at various stages of spermatogenesis, we show that Merlin mutations affect meiotic cytokinesis of spermatocytes, cyst polarization and nuclear shaping during spermatid elongation, and spermatid individualization. We also demonstrate that the lethality and sterility phenotype of the Mer 4 mutant is rescued by the introduction of a wild-type Merlin gene. Immunostaining demonstrates that the Merlin protein is redistributed to the area associated with the microtubules of the central spindle in telophase and its staining is less in the region of the contractile ring during meiotic cytokinesis. At the onion stage, Merlin is concentrated in the Nebenkern of spermatids, and this mitochondrial localization is maintained throughout sperm formation. Also, Merlin exhibits punctate staining in the acrosomal region of mature sperm. Conclusion Merlin mutations affect spermatogenesis at multiple stages. The Merlin protein is dynamically redistributed during meiosis of spermatocytes and is concentrated in the Nebenkern of spermatids. Our results demonstrated for the first time the mitochondrial localization of Merlin and suggest that Merlin may play a role in mitochondria formation and function during spermatogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

Reference40 articles.

1. Lindsley DL, Tokuyasu KT: Spermatogenesis. Genetics and Biology of Drosophila. Edited by: Ashburner M, Wright TR. 1980, Academic Press, NY, NY, 225-294. 2

2. Fuller M: Spermatogenesis. The Development of Drosophila melanogaster. Edited by: Bate M, Arias AM. 1993, Cold Spring Harbor Laboratory Press, NY, 71-147.

3. Cross DP, Shellenbargerr DL: The dynamics of Drosophila melanogaster spermatogenesis in in vitro cultures. J Embryol Exp Morph. 1979, 53: 345-351.

4. Fabrizio J, Hime G, Lemmon S, Bazinet C: Genetic dissection of sperm individualization in Drosophila melanogaster. Development. 1998, 125: 1833-1843.

5. Fuller MT: Genetic control of cell proliferation and differentiation in Drosophila spermatogenesis. Semin Cell Dev Biol. 1998, 9: 433-444. 10.1006/scdb.1998.0227.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3