Deciphering protein function during mitosis in PtK cells using RNAi

Author:

Stout Jane R,Rizk Rania S,Kline Susan L,Walczak Claire E

Abstract

Abstract Background Studying mitosis requires a system in which the dramatic movements of chromosomes and spindle microtubules can be visualized. PtK cells, due to their flat morphology and their small number of large chromosomes, allow microscopic visualizations to be readily performed. Results By performing RNAi in PtK cells, we can explore the function of many proteins important for spindle assembly and chromosome segregation. Although it is difficult to transfect DNA into PtK cells (efficiency ~ 10%), we have transfected a fluorescent siRNA at nearly 100% efficiency. Using a cDNA expression library, we then isolated a complete PtK MCAK (P-MCAK) cDNA. P-MCAK shares 81% identity to Human-MCAK (H-MCAK) protein and 66% identity to H-MCAK DNA. Knockdown of P-MCAK by RNAi caused defects in chromosome congression and defective spindle organization. Live imaging revealed that chromosomes had defects in congression and segregation, similar to what we found after microinjection of inhibitory anti-MCAK antibodies. Because it is laborious to isolate full-length clones, we explored using RT-PCR with degenerate primers to yield cDNA fragments from PtK cells from which to design siRNAs. We isolated a cDNA fragment of the mitotic kinesin Eg5 from PtK cells. This fragment is 93% identical to H-Eg5 protein and 87% identical to H-Eg5 DNA. A conserved 21 bp siRNA was used for RNAi in both HeLa and PtK cells in which Eg5 knockdown resulted in an increased mitotic index and cells with monopolar spindles. In addition, we used RT-PCR to isolate fragments of 5 additional genes, whose sequence identity ranged from 76 to 90% with human, mouse, or rat genes, suggesting that this strategy is feasible to apply to any gene of interest. Conclusion This approach will allow us to effectively probe mitotic defects from protein knockdowns by combining genomic information from other organisms with the tractable morphology of PtK cells.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3