Author:
Hoat Trinh Xuan,Bertin Nicolas,Ninomiya Noriko,Fukuda Shiro,Usui Kengo,Kawai Jun,Hayashizaki Yoshihide,Suzuki Harukazu
Abstract
Abstract
Background
Important clues to the function of novel and uncharacterized proteins can be obtained by identifying their ability to translocate in the nucleus. In addition, a comprehensive definition of the nuclear proteome undoubtedly represents a key step toward a better understanding of the biology of this organelle. Although several high-throughput experimental methods have been developed to explore the sub-cellular localization of proteins, these methods tend to focus on the predominant localizations of gene products and may fail to provide a complete catalog of proteins that are able to transiently locate into the nucleus.
Results
We have developed a method for examining the nuclear localization potential of human gene products at the proteome scale by adapting a mammalian two-hybrid system we have previously developed. Our system is composed of three constructs co-transfected into a mammalian cell line. First, it contains a PCR construct encoding a fusion protein composed of a tested protein, the PDZ-protein TIP-1, and the transactivation domain of TNNC2 (referred to as ACT construct). Second, our system contains a PCR construct encoding a fusion protein composed of the DNA binding domain of GAL4 and the PDZ binding domain of rhotekin (referred to as the BIND construct). Third, a GAL4-responsive luciferase reporter is used to detect the reconstitution of a transcriptionally active BIND-ACT complex through the interaction of TIP-1 and rhotekin, which indicates the ability of the tested protein to translocate into the nucleus. We validated our method in a small-scale feasibility study by comparing it to green fluorescent protein (GFP) fusion-based sub-cellular localization assays, sequence-based computational prediction of protein sub-cellular localization, and current sub-cellular localization data available from the literature for 22 gene products.
Conclusion
Our reporter-based system can rapidly screen gene products for their ability to be translocated to the nucleus. Large-scale applications of the system presented herein should provide invaluable information for a more complete biological atlas.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献