Author:
Kelley Joshua B,Talley Ashley M,Spencer Adam,Gioeli Daniel,Paschal Bryce M
Abstract
Abstract
Background
Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin α and importin β. NLS cargo is recognized by importin α, which is bound by importin β. Importin β mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin β triggers disassembly of the complex. To date, six importin α family members, encoded by separate genes, have been described in humans.
Results
We sequenced and characterized a seventh member of the importin α family of transport factors, karyopherin α 7 (KPNA7), which is most closely related to KPNA2. The domain of KPNA7 that binds Importin β (IBB) is divergent, and shows stronger binding to importin β than the IBB domains from of other importin α family members. With regard to NLS recognition, KPNA7 binds to the retinoblastoma (RB) NLS to a similar degree as KPNA2, but it fails to bind the SV40-NLS and the human nucleoplasmin (NPM) NLS. KPNA7 shows a predominantly nuclear distribution under steady state conditions, which contrasts with KPNA2 which is primarily cytoplasmic.
Conclusion
KPNA7 is a novel importin α family member in humans that belongs to the importin α2 subfamily. KPNA7 shows different subcellular localization and NLS binding characteristics compared to other members of the importin α family. These properties suggest that KPNA7 could be specialized for interactions with select NLS-containing proteins, potentially impacting developmental regulation.
Publisher
Springer Science and Business Media LLC
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献