Dynamic expression of synemin isoforms in mouse embryonic stem cells and neural derivatives

Author:

de Souza Martins Sheila C,Agbulut Onnik,Diguet Nicolas,Larcher Jean-Christophe,Paulsen Bruna S,Rehen Stevens K,Moura-Neto Vivaldo,Paulin Denise,Li Zhenlin,Xue Zhigang

Abstract

Abstract Background Intermediate filaments (IFs) are major components of the mammalian cytoskeleton and expressed in cell-type-specific patterns. Morphological changes during cell differentiation are linked to IF network remodeling. However, little is known concerning the presence and the role of IFs in embryonic stem (ES) cells and during their differentiation. Results We have examined the expression profile of synemin isoforms in mouse pluripotent ES cells and during their neural differentiation induced by retinoic acid. Using RT-PCR, Western blotting and immunostaining, we show that synemin M is present at both mRNA and protein levels in undifferentiated ES cells as early as pluripotency factor Oct-3/4 and IF keratin 8. Synemin H was produced only in neural precursors when neural differentiation started, concurrently with synemin M, nestin and glial fibrillary acidic protein. However, both synemin H and M were restricted to the progenitor line during the neural differentiation program. Our in vivo analysis also confirmed the expression of synemins H/M in multipotent neural stem cells in the subventricular zone of the adult brain, a neurogenic germinal niche of the mice. Knocking down synemin in ES cells by shRNA lentiviral particles transduction has no influence on expression of Oct4, Nanog and SOX2, but decreased keratin 8 expression. Conclusions Our study shows a developmental stage specific regulation of synemin isoforms in ES cells and its neural derivatives. These findings represent the first evidence that synemins could potentially be useful markers for distinguishing multipotent ES cells from undifferentiated neural stem cells and more committed progenitor cells.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3