Author:
Wei Yan,Chen Lan,Chen Ji,Ge Lin,He Rong Qiao
Abstract
Abstract
Background
D-ribose in cells and human serum participates in glycation of proteins resulting in advanced glycation end products (AGEs) that affect cell metabolism and induce cell death. However, the mechanism by which D-ribose-glycated proteins induce cell death is still unclear.
Results
Here, we incubated D-ribose with bovine serum albumin (BSA) and observed changes in the intensity of fluorescence at 410 nm and 425 nm to monitor the formation of D-ribose-glycated BSA. Comparing glycation of BSA with xylose (a control for furanose), glucose and fructose (controls for pyranose), the rate of glycation with D-ribose was the most rapid. Protein intrinsic fluorescence (335 nm), Nitroblue tetrazolium (NBT) assays and Western blotting with anti-AGEs showed that glycation of BSA incubated with D-ribose occurred faster than for the other reducing sugars. Protein intrinsic fluorescence showed marked conformational changes when BSA was incubated with D-ribose. Importantly, observations with atomic force microscopy showed that D-ribose-glycated BSA appeared in globular polymers. Furthermore, a fluorescent assay with Thioflavin T (ThT) showed a remarkable increase in fluorescence at 485 nm in the presence of D-ribose-glycated BSA. However, ThT fluorescence did not show the same marked increase in the presence of xylose or glucose. This suggests that glycation with D-ribose induced BSA to aggregate into globular amyloid-like deposits. As observed by Hoechst 33258 staining, 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) activity assay, flow cytometry using Annexin V and Propidium Iodide staining and reactive oxygen species (ROS) measurements, the amyloid-like aggregation of glycated BSA induced apoptosis in the neurotypic cell line SH-SY5Y.
Conclusion
Glycation with D-ribose induces BSA to misfold rapidly and form globular amyloid-like aggregations which play an important role in cytotoxicity to neural cells.
Publisher
Springer Science and Business Media LLC
Reference64 articles.
1. Day JF, Thorpe SR, Baynes JW: Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum. J Biol Chem. 1979, 254 (3): 595-597.
2. J TP: The Clinical Significance of Glycation. Clin Lab. 1999, 45: 263-273.
3. Degenhardt TP, Thorpe SR, Baynes JW: Chemical modification of proteins by methylglyoxal. Cell Mol Biol (Noisy-le-grand). 1998, 44 (7): 1139-1145.
4. McCance DR, Dyer DG, Dunn JA, Bailie KE, Thorpe SR, Baynes JW, Lyons TJ: Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest. 1993, 91 (6): 2470-2478. 10.1172/JCI116482.
5. Lyons TJ, Silvestri G, Dunn JA, Dyer DG, Baynes JW: Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes. 1991, 40 (8): 1010-1015. 10.2337/diabetes.40.8.1010.
Cited by
206 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献