Abstract
Abstract
Background
Lockdown policies were widely adopted during the coronavirus disease 2019 (COVID-19) pandemic to control the spread of the virus before vaccines became available. These policies had significant economic impacts and caused social disruptions. Early re-opening is preferable, but it introduces the risk of a resurgence of the epidemic. Although the World Health Organization has outlined criteria for re-opening, decisions on re-opening are mainly based on epidemiologic criteria. To date, the effectiveness of re-opening policies remains unclear.
Methods
A system dynamics COVID-19 model, SEIHR(Q), was constructed by integrating infection prevention and control measures implemented in Wuhan into the classic SEIR epidemiological model and was validated with real-world data. The input data were obtained from official websites and the published literature.
Results
The simulation results showed that track-and-trace measures had significant effects on the level of risk associated with re-opening. In the case of Wuhan, where comprehensive contact tracing was implemented, there would have been almost no risk associated with re-opening. With partial contact tracing, re-opening would have led to a minor second wave of the epidemic. However, if only limited contact tracing had been implemented, a more severe second outbreak of the epidemic would have occurred, overwhelming the available medical resources. If the ability to implement a track-trace-quarantine policy is fixed, the epidemiological criteria need to be further taken into account. The model simulation revealed different levels of risk associated with re-opening under different levels of track-and-trace ability and various epidemiological criteria. A matrix was developed to evaluate the effectiveness of the re-opening policies.
Conclusions
The SEIHR(Q) model designed in this study can quantify the impact of various re-opening policies on the spread of COVID-19. Integrating epidemiologic criteria, the contact tracing policy, and medical resources, the model simulation predicts whether the re-opening policy is likely to lead to a further outbreak of the epidemic and provides evidence-based support for decisions regarding safe re-opening during an ongoing epidemic.
Keyords
COVID-19; Risk of re-opening; Effectiveness of re-opening policies; IPC measures; SD modelling.
Funder
National Planning Office of Philosophy and Social Science
Science and Technology Committee of Shanghai Municipality Soft Science Research Plans
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献