Author:
Zhu Minmin,Zhong Xuan,Liao Tong,Peng Xiaolin,Lei Lin,Peng Ji,Cao Yong
Abstract
Abstract
Background
Colorectal cancer (CRC) is a global health issue with noticeably high incidence and mortality. Microsimulation models offer a time-efficient method to dynamically analyze multiple screening strategies. The study aimed to identify the efficient organized CRC screening strategies for Shenzhen City.
Methods
A microsimulation model named CMOST was employed to simulate CRC screening among 1 million people without migration in Shenzhen, with two CRC developing pathways and real-world participation rates. Initial screening included the National Colorectal Polyp Care score (NCPCS), fecal immunochemical test (FIT), and risk-stratification model (RS model), followed by diagnostic colonoscopy for positive results. Several start-ages (40, 45, 50 years), stop-ages (70, 75, 80 years), and screening intervals (annual, biennial, triennial) were assessed for each strategy. The efficiency of CRC screening was assessed by number of colonoscopies versus life-years gained (LYG).
Results
The screening strategies reduced CRC lifetime incidence by 14–27 cases (30.9–59.0%) and mortality by 7–12 deaths (41.5–71.3%), yielded 83–155 LYG, while requiring 920 to 5901 colonoscopies per 1000 individuals. Out of 81 screening, 23 strategies were estimated efficient. Most of the efficient screening strategies started at age 40 (17 out of 23 strategies) and stopped at age 70 (13 out of 23 strategies). Predominant screening intervals identified were annual for NCPCS, biennial for FIT, and triennial for RS models. The incremental colonoscopies to LYG ratios of efficient screening increased with shorter intervals within the same test category. Compared with no screening, when screening at the same start-to-stop age and interval, the additional colonoscopies per LYG increased progressively for FIT, NCPCS and RS model.
Conclusion
This study identifies efficient CRC screening strategies for the average-risk population in Shenzhen. Most efficient screening strategies indeed start at age 40, but the optimal starting age depends on the chosen willingness-to-pay threshold. Within insufficient colonoscopy resources, efficient FIT and NCPCS screening strategies might be CRC initial screening strategies. We acknowledged the age-dependency bias of the results with NCPCS and RS.
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
2. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J. 2021;134(7):783–91.
3. Wang N, Liu J, Li X, Wang C, Zi H, Yang M, et al. An analysis of disease burden of colorectal cancer in China from 1990 to 2019. Chin J Evid Based Med. 2021;21(05):520–4.
4. Ladabaum U, Dominitz JA, Kahi C, Schoen RE. Strategies for colorectal cancer screening. Gastroenterology. 2020;158(2):418–32.
5. Gupta S. Screening for colorectal cancer. Hematol Oncol Clin North Am. 2022;36(3):393–414. https://doi.org/10.1016/j.hoc.2022.02.001.