Author:
Wu Yibo,Min Hewei,Li Mingzi,Shi Yuhui,Ma Aijuan,Han Yumei,Gan Yadi,Guo Xiaohui,Sun Xinying
Abstract
Abstract
Background
Patients with type 2 diabetes (T2DM) have an increasing need for personalized and Precise management as medical technology advances. Artificial intelligence (AI) technologies on mobile devices are being developed gradually in a variety of healthcare fields. As an AI field, knowledge graph (KG) is being developed to extract and store structured knowledge from massive data sets. It has great prospects for T2DM medical information retrieval, clinical decision-making, and individual intelligent question and answering (QA), but has yet to be thoroughly researched in T2DM intervention. Therefore, we designed an artificial intelligence-based health education accurately linking system (AI-HEALS) to evaluate if the AI-HEALS-based intervention could help patients with T2DM improve their self-management abilities and blood glucose control in primary healthcare.
Methods
This is a nested mixed-method study that includes a community-based cluster-randomized control trial and personal in-depth interviews. Individuals with T2DM between the ages of 18 and 75 will be recruited from 40-45 community health centers in Beijing, China. Participants will either receive standard diabetes primary care (SDPC) (control, 3 months) or SDPC plus AI-HEALS online health education program (intervention, 3 months). The AI-HEALS runs in the WeChat service platform, which includes a KBQA, a system of physiological indicators and lifestyle recording and monitoring, medication and blood glucose monitoring reminders, and automated, personalized message sending. Data on sociodemography, medical examination, blood glucose, and self-management behavior will be collected at baseline, as well as 1,3,6,12, and 18 months later. The primary outcome is to reduce HbA1c levels. Secondary outcomes include changes in self-management behavior, social cognition, psychology, T2DM skills, and health literacy. Furthermore, the cost-effectiveness of the AI-HEALS-based intervention will be evaluated.
Discussion
KBQA system is an innovative and cost-effective technology for health education and promotion for T2DM patients, but it is not yet widely used in the T2DM interventions. This trial will provide evidence on the efficacy of AI and mHealth-based personalized interventions in primary care for improving T2DM outcomes and self-management behaviors.
Trial registration
Biomedical Ethics Committee of Peking University: IRB00001052-22,058, 2022/06/06; Clinical Trials: ChiCTR2300068952, 02/03/2023.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference75 articles.
1. International Diabetes Federation. IDF Diabetes Atlas teB, Belgium: International Diabetes Federation, 2021.
2. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, D’Alessio DA, Davies MJ. 2019 Update to: management of hyperglycemia in Type 2 Diabetes, 2018. a Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487–93.
3. Toi PL, Anothaisintawee T, Chaikledkaew U, Briones JR, Reutrakul S, Thakkinstian A. Preventive role of diet interventions and dietary factors in Type 2 diabetes mellitus: an umbrella review. Nutrients. 2020;12(9):2722.
4. Papamichou D, Panagiotakos DB, Itsiopoulos C. Dietary patterns and management of type 2 diabetes: a systematic review of randomised clinical trials. Nutr Metab Cardiovasc Dis. 2019;29(6):531–43.
5. Hemmingsen B, Gimenez-Perez G, Mauricio D, Roque IFM, Metzendorf MI, Richter B. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev. 2017;12:CD003054.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献