Spatial associations of long-term exposure to diesel particulate matter with seasonal and annual mortality due to COVID-19 in the contiguous United States

Author:

Mathieu Martine Elisabeth,Gray Joshua,Richmond-Bryant JenniferORCID

Abstract

Abstract Background People with certain underlying respiratory and cardiovascular conditions might be at an increased risk for severe illness from COVID-19. Diesel Particulate Matter (DPM) exposure may affect the pulmonary and cardiovascular systems. The study aims to assess if DPM was spatially associated with COVID-19 mortality rates across three waves of the disease and throughout 2020. Methods We tested an ordinary least squares (OLS) model, then two global models, a spatial lag model (SLM) and a spatial error model (SEM) designed to explore spatial dependence, and a geographically weighted regression (GWR) model designed to explore local associations between COVID-19 mortality rates and DPM exposure, using data from the 2018 AirToxScreen database. Results The GWR model found that associations between COVID-19 mortality rate and DPM concentrations may increase up to 77 deaths per 100,000 people in some US counties for every interquartile range (0.21 μg/m3) increase in DPM concentration. Significant positive associations between mortality rate and DPM were observed in New York, New Jersey, eastern Pennsylvania, and western Connecticut for the wave from January to May, and in southern Florida and southern Texas for June to September. The period from October to December exhibited a negative association in most parts of the US, which seems to have influenced the year-long relationship due to the large number of deaths during that wave of the disease. Conclusions Our models provided a picture in which long-term DPM exposure may have influenced COVID-19 mortality during the early stages of the disease. That influence appears to have waned over time as transmission patterns evolved.

Funder

National Institutes of Health

Center for Geospatial Analytics, North Carolina State University

Foundation for the National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3