Author:
Jian Hui,Lu Wen-Jie,Chen Ze-Wei,Liang Shi-Qing,Yue Xiao-Li,Li Jing,Zhang Jia-Hui,Gong Xiang-Dong
Abstract
Abstract
Introduction
Chlamydia trachomatis infection can cause a significant disease burden in high-risk populations. This study aimed to assess the overall prevalence of C. trachomatis infection, and determine the long-term trends and geographic distribution of this infection among female sex workers (FSWs) and men who have sex with men (MSM) in China.
Methods
The PubMed, Web of Science, CNKI, Wanfang Data and VIP databases were searched from 1 January 1990 through 30 April 2023. Publications in which C. trachomatis infection was detected using nucleic acid amplification tests (NAATs) were included. The Q test and I2 statistics were used to assess the heterogeneity between studies. A random-effect model was used to estimate the pooled prevalence of C. trachomatis infection. Subgroup, meta-regression, and sensitivity analyses were performed to explore the sources of heterogeneity. Publication bias was evaluated using Egger’s test. Trend analysis of the prevalence was performed using the Jonckheere-Terpstra trend test method.
Results
Sixty-one studies were eligible for inclusion (including 38 for FSWs and 23 for MSM). The pooled prevalence of C. trachomatis infection was 19.5% (95% CI: 16.4, 23.0) among FSWs and 12.7% (95% CI: 9.2, 17.7) in the rectum, 6.4% (95% CI: 5.3, 7.8) in the urethra and 1.3% (95% CI: 0.8, 2.1) in the oropharynx from MSM in China. The subgroup analyses showed that the sample size, study period, study region, specimen collection type, molecular diagnosis method, and recruitment site could explain some heterogeneity among studies of FSWs, and the publication language, study period, study region, molecular diagnosis method, and specimen collection anatomical site could explain some heterogeneity among studies of MSM. From 1998 to 2004, 2005 to 2009, 2010 to 2015, and 2016 to 2021, the pooled prevalence of C. trachomatis infection among FSWs were 30.3%, 19.9%, 21.4%, and 11.3%, respectively. For MSM, the pooled prevalence from 2003 to 2009, 2010 to 2015, and 2016 to 2022 were 7.8%, 4.7%, and 6.5%, respectively. However, no overall decline in the prevalence of C. trachomatis infection was observed among FSWs (z = -1.51, P = 0.13) or MSM (z = -0.71, P = 0.48) in China.
Conclusions
The prevalence of C. trachomatis infection was high in these two high-risk populations in China. The findings of this study provide evidence for the formulation of effective surveillance and screening strategies for the prevention and control of C. trachomatis infection among these two specific populations.
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Sturd N, Rucks EA. Chlamydia trachomatis. Trends Microbiol. 2023;31(5):535–6.
2. Monden K, Kumon H. Genital chlamydial infection. Nihon Rinsho. 2009;67(1):125–8.
3. O’Connell CM, Ferone ME. Chlamydia trachomatis Genital Infections. Microb Cell. 2016;3(9):390–403.
4. World Health Organization. Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021. https://www.who.int/publications/i/item/9789240027077. Accessed 15 July 2021.
5. Yue XL, Gong XD, Li J, Zhang JH. Epidemiologic features of genital Chlamydia trachomatis infection at national sexually transmitted disease surveillance sites in China, 2015–2019. Chin J Dermatol. 2020;53(8):596–601.