Exploring predictors of welfare dependency 1, 3, and 5 years after mental health-related absence in danish municipalities between 2010 and 2012 using flexible machine learning modelling

Author:

Bjerregaard Søren Skotte

Abstract

Abstract Background Using XGBoost (XGB), this study demonstrates how flexible machine learning modelling can complement traditional statistical modelling (multinomial logistic regression) as a sensitivity analysis and predictive modelling tool in occupational health research. Design The study predicts welfare dependency for a cohort at 1, 3, and 5 years of follow-up using XGB and multinomial logistic regression (MLR). The models’ predictive ability is evaluated using tenfold cross-validation (internal validation) and geographical validation (semi-external validation). In addition, we calculate and graphically assess Shapley additive explanation (SHAP) values from the XGB model to examine deviation from linearity assumptions, including interactions. The study population consists of all 20–54 years old on long-term sickness absence leave due to self-reported common mental disorders (CMD) between April 26, 2010, and September 2012 in 21 (of 98) Danish municipalities that participated in the Danish Return to Work program. The total sample of 19.664 observations is split geospatially into a development set (n = 9.756) and a test set (n = 9.908). Results There were no practical differences in the XGB and MLR models’ predictive ability. Industry, job skills, citizenship, unemployment insurance, gender, and period had limited importance in predicting welfare dependency in both models. On the other hand, welfare dependency history and reason for sickness absence were strong predictors. Graphical SHAP-analysis of the XGB model did not indicate substantial deviations from linearity assumptions implied by the multinomial regression model. Conclusion Flexible machine learning models like XGB can supplement traditional statistical methods like multinomial logistic regression in occupational health research by providing a benchmark for predictive performance and traditional statistical models' ability to capture important associations for a given set of predictors as well as potential violations of linearity. Trial registration ISRCTN43004323.

Funder

Danish Ministry of Employment

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3