Spatio-temporal modeling of human leptospirosis prevalence using the maximum entropy model

Author:

Shirzad RezaORCID,Alesheikh Ali AsgharORCID,Asgharzadeh MojtabaORCID,Hoseini BenyaminORCID,Lotfata AynazORCID

Abstract

Abstract Background Leptospirosis, a zoonotic disease, stands as one of the prevailing health issues in some tropical areas of Iran. Over a decade, its incidence rate has been estimated at approximately 2.33 cases per 10,000 individuals. Our research focused on analyzing the spatiotemporal clustering of Leptospirosis and developing a disease prevalence model as an essential focal point for public health policymakers, urging targeted interventions and strategies. Methods The SaTScan and Maximum Entropy (MaxEnt) modeling methods were used to find the spatiotemporal clusters of the Leptospirosis and model the disease prevalence in Iran. We incorporated nine environmental covariates by employing a spatial resolution of 1 km x 1 km, the finest resolution ever implemented for modeling Human Leptospirosis in Iran. These covariates encompassed the Digital Elevation Model (DEM), slope, displacement areas, water bodies, and land cover, monthly recorded Normalized Difference Vegetation Index (NDVI), monthly recorded precipitation, monthly recorded mean and maximum temperature, contributing significantly to our disease modeling approach. The analysis using MaxEnt yielded the Area Under the Receiver Operating Characteristic Curve (AUC) metrics for the training and test data, to evaluate the accuracy of the implemented model. Results The findings reveal a highly significant primary cluster (p-value < 0.05) located in the western regions of the Gilan province, spanning from July 2013 to July 2015 (p-value < 0.05). Moreover, there were four more clusters (p-value < 0.05) identified near Someh Sara, Neka, Gorgan and Rudbar. Furthermore, the risk mapping effectively illustrates the potential expansion of the disease into the western and northwestern regions. The AUC metrics of 0.956 and 0.952 for the training and test data, respectively, underscoring the robust accuracy of the implemented model. Interestingly, among the variables considered, the influence of slope and distance from water bodies appears to be minimal. However, altitude and precipitation stand out as the primary determinants that significantly contribute to the prevalence of the disease. Conclusions The risk map generated through this study carries significant potential to enhance public awareness and inform the formulation of impactful policies to combat Leptospirosis. These maps also play a crucial role in tracking disease incidents and strategically directing interventions toward the regions most susceptible.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3