An explainable artificial intelligence framework for risk prediction of COPD in smokers

Author:

Wang Xuchun,Qiao Yuchao,Cui Yu,Ren Hao,Zhao Ying,Linghu Liqin,Ren Jiahui,Zhao Zhiyang,Chen Limin,Qiu Lixia

Abstract

Abstract Background Since the inconspicuous nature of early signs associated with Chronic Obstructive Pulmonary Disease (COPD), individuals often remain unidentified, leading to suboptimal opportunities for timely prevention and treatment. The purpose of this study was to create an explainable artificial intelligence framework combining data preprocessing methods, machine learning methods, and model interpretability methods to identify people at high risk of COPD in the smoking population and to provide a reasonable interpretation of model predictions. Methods The data comprised questionnaire information, physical examination data and results of pulmonary function tests before and after bronchodilatation. First, the factorial analysis for mixed data (FAMD), Boruta and NRSBoundary-SMOTE resampling methods were used to solve the missing data, high dimensionality and category imbalance problems. Then, seven classification models (CatBoost, NGBoost, XGBoost, LightGBM, random forest, SVM and logistic regression) were applied to model the risk level, and the best machine learning (ML) model’s decisions were explained using the Shapley additive explanations (SHAP) method and partial dependence plot (PDP). Results In the smoking population, age and 14 other variables were significant factors for predicting COPD. The CatBoost, random forest, and logistic regression models performed reasonably well in unbalanced datasets. CatBoost with NRSBoundary-SMOTE had the best classification performance in balanced datasets when composite indicators (the AUC, F1-score, and G-mean) were used as model comparison criteria. Age, COPD Assessment Test (CAT) score, gross annual income, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), anhelation, respiratory disease, central obesity, use of polluting fuel for household heating, region, use of polluting fuel for household cooking, and wheezing were important factors for predicting COPD in the smoking population. Conclusion This study combined feature screening methods, unbalanced data processing methods, and advanced machine learning methods to enable early identification of COPD risk groups in the smoking population. COPD risk factors in the smoking population were identified using SHAP and PDP, with the goal of providing theoretical support for targeted screening strategies and smoking population self-management strategies.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3