Author:
Wang Xu,Cheng Jian,Ling Li,Su Hong,Zhao Desheng,Ni Hong
Abstract
Abstract
Background
Many studies have shown an association of childhood respiratory diseases with short-term temperature variability such as diurnal temperature range (DTR) and temperature change between two neighboring days (TCN). However, the impact of temperature variability on allergic rhinitis (AR) has not been investigated so far. This study sought to evaluate the short-term effect of temperature variability (i.e., TCN and DTR) on AR, as well as to identify vulnerable subpopulations.
Method
We collected daily data on emergency room visits and outpatients for AR and weather variables in Hefei, China during 2014–2016. A distributed lag non-linear model that controlled for long-term trend and seasonality, mean temperature, relative humidity, day of week was used to fit the associations of AR with DTR and TCN. Stratified analyses by age, sex and occupation were also performed.
Results
During the study period, there were a total of 53,538 cases and the average values of DTR and TCN were 8.4 °C (range: 1.0 °C to 21.2 °C) and 0 °C (range: − 12.2 °C to 5.9 °C), respectively. While we did not observe an adverse effect of DTR on AR, TCN was significantly associated with increased risk of AR. Specifically, a large temperature drop between two adjacent days (3.8 °C, 5th percentile of TCN) has a delayed and short-lasting effect on AR, with the estimated relative risk of 1.02 (95% confidence interval: 1.01 to 1.04) at lag 12. Moreover, boys and children older than 15 years seemed to be more vulnerable to the effect of TCN.
Conclusions
This study provided evidence of an adverse effect of large temperature drops between two adjacent days on childhood AR. Attention paid to boys and older children may help prevent AR attacks.
Funder
The science and technology innovation strategy and soft science research in anhui province
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference19 articles.
1. Zhang Y, Zhang L. Prevalence of allergic rhinitis in China. Allergy Asthma Immunol Res. 2014;6(2):105–13.
2. Balatsouras DG, Koukoutsis G, Ganelis P, et al. Study of allergic rhinitis in childhood. Int J Otolaryngol. 2011;2011:1–7.
3. Wang XD, Zheng M, Lou HF, et al. An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy. 2016;71:1170–80.
4. Manuyakorn W, Padungpak S, Luecha O, et al. Assessing the efficacy of a novel temperature and humidity control machine to minimize house dust mite allergen exposure and clinical symptoms in allergic. Asian Pacific J Allergy Immunol. 2015;33(2):129.
5. Bousquet J, Khaltaev N, Cruz AA, et al. Allergic rhinitis and its impact on asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA2LEN and AllerGen). Allergy. 2008;63(Suppl. 86):8–160.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献