Using meta-learning to recommend an appropriate time-series forecasting model

Author:

Talkhi Nasrin,Akhavan Fatemi Narges,Jabbari Nooghabi Mehdi,Soltani Ehsan,Jabbari Nooghabi Azadeh

Abstract

Abstract Background There are various forecasting algorithms available for univariate time series, ranging from simple to sophisticated and computational. In practice, selecting the most appropriate algorithm can be difficult, because there are too many algorithms. Although expert knowledge is required to make an informed decision, sometimes it is not feasible due to the lack of such resources as time, money, and manpower. Methods In this study, we used coronavirus disease 2019 (COVID-19) data, including the absolute numbers of confirmed, death and recovered cases per day in 187 countries from February 20, 2020, to May 25, 2021. Two popular forecasting models, including Auto-Regressive Integrated Moving Average (ARIMA) and exponential smoothing state-space model with Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend, and Seasonal components (TBATS) were used to forecast the data. Moreover, the data were evaluated by the root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and symmetric mean absolute percentage error (SMAPE) criteria to label time series. The various characteristics of each time series based on the univariate time series structure were extracted as meta-features. After that, three machine-learning classification algorithms, including support vector machine (SVM), decision tree (DT), random forest (RF), and artificial neural network (ANN) were used as meta-learners to recommend an appropriate forecasting model. Results The finding of the study showed that the DT model had a better performance in the classification of time series. The accuracy of DT in the training and testing phases was 87.50% and 82.50%, respectively. The sensitivity of the DT algorithm in the training phase was 86.58% and its specificity was 88.46%. Moreover, the sensitivity and specificity of the DT algorithm in the testing phase were 73.33% and 88%, respectively. Conclusion In general, the meta-learning approach was able to predict the appropriate forecasting model (ARIMA and TBATS) based on some time series features. Considering some characteristics of the desired COVID-19 time series, the ARIMA or TBATS forecasting model might be recommended to forecast the death, confirmed, and recovered trend cases of COVID-19 by the DT model.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3