Geographic disparities and temporal changes of COVID-19 incidence risks in North Dakota, United States

Author:

Deb Nath Nirmalendu,Khan Md Marufuzzaman,Schmidt Matthew,Njau Grace,Odoi Agricola

Abstract

Abstract Background COVID-19 is an important public health concern due to its high morbidity, mortality and socioeconomic impact. Its burden varies by geographic location affecting some communities more than others. Identifying these disparities is important for guiding health planning and service provision. Therefore, this study investigated geographical disparities and temporal changes of the percentage of positive COVID-19 tests and COVID-19 incidence risk in North Dakota. Methods COVID-19 retrospective data on total number of tests and confirmed cases reported in North Dakota from March 2020 to September 2021 were obtained from the North Dakota COVID-19 Dashboard and Department of Health, respectively. Monthly incidence risks of the disease were calculated and reported as number of cases per 100,000 persons. To adjust for geographic autocorrelation and the small number problem, Spatial Empirical Bayesian (SEB) smoothing was performed using queen spatial weights. Identification of high-risk geographic clusters of percentages of positive tests and COVID-19 incidence risks were accomplished using Tango’s flexible spatial scan statistic. ArcGIS was used to display and visiualize the geographic distribution of percentages of positive tests, COVID-19 incidence risks, and high-risk clusters. Results County-level percentages of positive tests and SEB incidence risks varied by geographic location ranging from 0.11% to 13.67% and 122 to 16,443 cases per 100,000 persons, respectively. Clusters of high percentages of positive tests were consistently detected in the western part of the state. High incidence risks were identified in the central and south-western parts of the state, where significant high-risk spatial clusters were reported. Additionally, two peaks (August 2020-December 2020 and August 2021-September 2021) and two non-peak periods of COVID-19 incidence risk (March 2020-July 2020 and January 2021-July 2021) were observed. Conclusion Geographic disparities in COVID incidence risks exist in North Dakota with high-risk clusters being identified in the rural central and southwest parts of the state. These findings are useful for guiding intervention strategies by identifying high risk communities so that resources for disease control can be better allocated to communities in need based on empirical evidence. Future studies will investigate predictors of the identified disparities so as to guide planning, disease control and health policy.

Funder

North Dakota Department of Health and Human Services, United States

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference64 articles.

1. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed 10 Mar 2022.

2. World Health Organization. United States of America: WHO Coronavirus Disease (COVID-19) Dashboard With Vaccination Data | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. https://covid19.who.int/region/amro/country/us. Accessed 10 Mar 2022.

3. North Dakota health officials confirm 4 more cases of COVID-19; 2 in Burleigh County | Health | bismarcktribune.com. https://bismarcktribune.com/news/local/health/north-dakota-health-officials-confirm-more-cases-of-covid-/article_b1a73e22-7c7f-5cad-ad6c-3ea850e6bea2.html. Accessed 25 Mar 2022.

4. North Dakota Department of Health and Human Services. Burgum requests major presidential disaster declaration for response to COVID-19 pandemic | Department of Health. https://www.health.nd.gov/news/burgum-requests-major-presidential-disaster-declaration-response-covid-19-pandemic. Accessed 25 Mar 2022.

5. Fadl N, Ali E, Salem TZ. COVID-19: Risk Factors Associated with Infectivity and Severity. Scand J Immunol. 2021;93:1–14.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3