Estimating the risk of SARS-CoV-2 deaths using a Markov switching-volatility model combined with heavy-tailed distributions for South Africa

Author:

Mthethwa Nobuhle,Chifurira Retius,Chinhamu Knowledge

Abstract

Abstract Background SARS-CoV-2 (Covid-19 virus) infection exposed the unpreparedness of African countries to health-related issues, South Africa included. Africa recorded more than 211 853 deaths as a consequence of Covid-19. When rare and deadly diseases require urgent hospitalisation strikes, governments and healthcare providers are usually caught unprepared, resulting in huge loss of lives. Usually, at the beginning of such pandemics, there is no rich data for health practitioners and academics to be able to forecast the number of patients or deaths related to the pandemic. This study aims to predict the number of deaths associated with Covid-19 infection. With the availability of the number of deaths on a daily basis, the results stemming from this study are important to inform and plan health policy. Methods This study uses the daily number of deaths due to Covid-19 infection. Exploratory data analysis reveals that the data exhibits non-normality, three structural breaks and volatility clustering characteristics. The Markov switching (MS)-generalized autoregressive conditional heteroscedasticity (GARCH)-type model combined with heavy-tailed distributions is fitted to the returns of the data. Using available daily reported Covid-19-related deaths up until 26 August 2021, we report 10-day ahead forecasts of deaths. All forecasts are compared to the actual observed values in the forecasting period. Results The Anderson–Darling Goodness of fit test confirms that the fitted models are adequate for the data. The Kupiec likelihood ratio test and the root mean square error (RMSE) were used to select the robust model at different risk levels. At 95% the MS(3)-GARCH(1,1) combined with Pearson’s type IV distribution (PIVD) is the best model. This indicates that the proposed best-fitting model is reasonable and can be used for predicting the daily number of deaths due to Covid-19. Conclusion The MS(3)-GARCH(1,1)-PIVD model provides a reliable and accurate method for predicting the minimum number of death due to Covid-19. The accuracy of the proposed model will assist policymakers, academics and health practitioners in forecasting the volatility of future health-related deaths in which the predictability of volatility plays an integral role in health risk management.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference27 articles.

1. Pham H. On estimating the number of deaths related to Covid-19. Mathematics. 2020;8(5):655.

2. Lone SA, Ahmad A. COVID-19 pandemic–an African perspective. Emerg Microbes Infect. 2020;9(1):1300–8.

3. NICD. First case of COVID-19 coronavirus reported in SA. 2020. Available at: https://www.nicd.ac.za/first-case-of-covid-19-coronavirus-reported-in-sa/.

4. Nyabadza F, Chirove F, Chukwu CW, Visaya MV. Modelling the potential impact of social distancing on the COVID-19 epidemic in South Africa. Comput Math Methods Med. 2020;2020:1–12.

5. Statistics South Africa. Business impact survey of the COVID-19 pandemic in South Africa. 2020. Available at: http://www.statssa.gov.za/publications/Report-00-80-01/Report-00-80-01April2020.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3