Enhancing community preparedness: an inventory and analysis of disaster citizen science activities

Author:

Chari RamyaORCID,Petrun Sayers Elizabeth L.,Amiri Sohaela,Leinhos Mary,Kotzias Virginia,Madrigano Jaime,Thomas Erin V.,Carbone Eric G.,Uscher-Pines Lori

Abstract

Abstract Background Disaster citizen science, or the use of scientific principles and methods by “non-professional” scientists or volunteers, may be a promising way to enhance public health emergency preparedness (PHEP) and build community resilience. However, little research has focused on understanding this emerging field and its implications for PHEP. To address research gaps, this paper: (1) assesses the state of disaster citizen science by developing an inventory of disaster citizen science projects; (2) identifies different models of disaster citizen science; and (3) assesses their relevance for PHEP. Methods We searched the English-language peer-reviewed and grey literature for disaster citizen science projects with no time period specified. Following searches, a team of three reviewers applied inclusion/exclusion criteria that defined eligible disasters and citizen science activities. Reviewers extracted the following elements from each project: project name and description; lead and partner entities; geographic setting; start and end dates; type of disaster; disaster phase; citizen science model; and technologies used. Results A final set of 209 projects, covering the time period 1953–2017, were included in the inventory. Projects were classified across five citizen science models: distributed or volunteer sensing (n = 19; 9%); contributory (n = 98; 47%); distributed intelligence (n = 52; 25%); collaborative research (n = 32; 15%); and collegial research (n = 8; 4%). Overall, projects were conducted across all disaster phases and most frequently for earthquakes, floods, and hurricanes. Although activities occurred globally, 40% of projects were set in the U.S. Academic, government, technology, and advocacy organizations were the most prevalent lead entities. Although a range of technologies were used, 77% of projects (n = 161) required an internet-connected device. These characteristics varied across citizen science models revealing important implications for applications of disaster citizen science, enhancement of disaster response capabilities, and sustainability of activities over time. Conclusions By increasing engagement in research, disaster citizen science may empower communities to take collective action, improve system response capabilities, and generate relevant data to mitigate adverse health impacts. The project inventory established a baseline for future research to capitalize on opportunities, address limitations, and help disaster citizen science achieve its potential.

Funder

Office of Public Health Preparedness and Response

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference30 articles.

1. Centers for Disease Control and Prevention. Public health preparedness capabilities: national standards for state and local planning. 2011. https://www.cdc.gov/phpr/readiness/capabilities.htm . Accessed 15 Oct 2018.

2. Federal Emergency Management Agency. A whole community approach to emergency management: principles, themes, and pathways for action. 2011. https://www.fema.gov/media-library-data/20130726-1813-25045-3330/whole_community_dec2011__2_.pdf . .

3. Office of the Assistant Secretary for Preparedness and Response. National Health Security Strategy and Implementation Plan 2015-2018. 2015. https://www.phe.gov/Preparedness/planning/authority/nhss/Pages/strategy.aspx. Accessed 15 Oct 2018 .

4. Centers for Disease Control and Prevention. Preparedness, PREP-15. In: Healthy People 2020. 2018. https://www.healthypeople.gov/2020/topics-objectives/topic/preparedness/objectives . .

5. Office of the Assistant Secretary for Preparedness and Response. Bystanders as first responders. https://www.phe.gov/eccc/PCCC/Pages/bystanders.aspx . Accessed 24 Aug 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3