Effectiveness of early warning systems in the detection of infectious diseases outbreaks: a systematic review

Author:

Meckawy Rehab,Stuckler David,Mehta Adityavarman,Al-Ahdal Tareq,Doebbeling Bradley N.

Abstract

Abstract Background Global pandemics have occurred with increasing frequency over the past decade reflecting the sub-optimum operationalization of surveillance systems handling human health data. Despite the wide array of current surveillance methods, their effectiveness varies with multiple factors. Here, we perform a systematic review of the effectiveness of alternative infectious diseases Early Warning Systems (EWSs) with a focus on the surveillance data collection methods, and taking into consideration feasibility in different settings. Methods We searched PubMed and Scopus databases on 21 October 2022. Articles were included if they covered the implementation of an early warning system and evaluated infectious diseases outbreaks that had potential to become pandemics. Of 1669 studies screened, 68 were included in the final sample. We performed quality assessment using an adapted CASP Checklist. Results Of the 68 articles included, 42 articles found EWSs successfully functioned independently as surveillance systems for pandemic-wide infectious diseases outbreaks, and 16 studies reported EWSs to have contributing surveillance features through complementary roles. Chief complaints from emergency departments’ data is an effective EWS but it requires standardized formats across hospitals. Centralized Public Health records-based EWSs facilitate information sharing; however, they rely on clinicians’ reporting of cases. Facilitated reporting by remote health settings and rapid alarm transmission are key advantages of Web-based EWSs. Pharmaceutical sales and laboratory results did not prove solo effectiveness. The EWS design combining surveillance data from both health records and staff was very successful. Also, daily surveillance data notification was the most successful and accepted enhancement strategy especially during mass gathering events. Eventually, in Low Middle Income Countries, working to improve and enhance existing systems was more critical than implementing new Syndromic Surveillance approaches. Conclusions Our study was able to evaluate the effectiveness of Early Warning Systems in different contexts and resource settings based on the EWSs’ method of data collection. There is consistent evidence that EWSs compiling pre-diagnosis data are more proactive to detect outbreaks. However, the fact that Syndromic Surveillance Systems (SSS) are more proactive than diagnostic disease surveillance should not be taken as an effective clue for outbreaks detection.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference80 articles.

1. Luan J, Ba J, Liu B, Xu X, Shu D. 2021–2022 monitoring, early warning, and forecasting of global infectious diseases. Int. J. Biosaf. 2022;4(2):98–104.

2. Li X, Cui W, Zhang F. Who Was the First Doctor to Report the COVID-19 Outbreak in Wuhan, China? J Nucl Med. 2020;61(6):782–3.

3. Economist T. The pandemic’s true death toll The Economist: The Economist; 2021 [Available from: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates.

4. WHO. 14.9 million excess deaths associated with the COVID-19 pandemic in 2020 and 2021 2022 [Available from: https://www.who.int/news/item/05-05-2022-14.9-million-excess-deaths-were-associated-with-the-covid-19-pandemic-in-2020-and-2021.

5. ECDC. Risk assessment: Monkeypox multi-country outbreak 2022 [Available from: https://www.ecdc.europa.eu/en/publications-data/risk-assessment-monkeypox-multi-country-outbreak#:~:text=Monkeypox%20(MPX)%20does%20not%20spread,face%20contact%2C%20and%20through%20fomites.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3