Spatiotemporal impacts of human activities and socio-demographics during the COVID-19 outbreak in the US

Author:

Ling Lu,Qian Xinwu,Guo Shuocheng,Ukkusuri Satish V.

Abstract

Abstract Background Understanding non-epidemiological factors is essential for the surveillance and prevention of infectious diseases, and the factors are likely to vary spatially and temporally as the disease progresses. However, the impacts of these influencing factors were primarily assumed to be stationary over time and space in the existing literature. The spatiotemporal impacts of mobility-related and social-demographic factors on disease dynamics remain to be explored. Methods Taking daily cases data during the coronavirus disease 2019 (COVID-19) outbreak in the US as a case study, we develop a mobility-augmented geographically and temporally weighted regression (M-GTWR) model to quantify the spatiotemporal impacts of social-demographic factors and human activities on the COVID-19 dynamics. Different from the base GTWR model, the proposed M-GTWR model incorporates a mobility-adjusted distance weight matrix where travel mobility is used in addition to the spatial adjacency to capture the correlations among local observations. Results The results reveal that the impacts of social-demographic and human activity variables present significant spatiotemporal heterogeneity. In particular, a 1% increase in population density may lead to 0.63% more daily cases, and a 1% increase in the mean commuting time may result in 0.22% increases in daily cases. Although increased human activities will, in general, intensify the disease outbreak, we report that the effects of grocery and pharmacy-related activities are insignificant in areas with high population density. And activities at the workplace and public transit are found to either increase or decrease the number of cases, depending on particular locations. Conclusions Through a mobility-augmented spatiotemporal modeling approach, we could quantify the time and space varying impacts of non-epidemiological factors on COVID-19 cases. The results suggest that the effects of population density, socio-demographic attributes, and travel-related attributes will differ significantly depending on the time of the pandemic and the underlying location. Moreover, policy restrictions on human contact are not universally effective in preventing the spread of diseases.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference48 articles.

1. Coronavirus Resource Center. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University; 2022. https://coronavirus.jhu.edu/map.html. Accessed 14 June 2022.

2. Priyanka OPC, Singh I, Patra G. Aerosol transmission of SARS-CoV-2: The unresolved paradox. Travel Med Infect Dis. 2020;37: 101869.

3. Brzezinski A, Deiana G, Kecht V, Van Dijcke D. The COVID-19 pandemic: government vs. community action across the united states. Covid Econ Vetted Real-Time Pap. 2020;7:115–56.

4. Nie Q, Qian X, Guo S, Jones S, Doustmohammadi M, Anderson MD. Impact of COVID-19 on paratransit operators and riders: A case study of central Alabama. Transp Res A Policy Pract. 2022;161:48–67.

5. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–4.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3