Garbage codes in the Norwegian Cause of Death Registry 1996–2019

Author:

Ellingsen Christian Lycke,Alfsen G. Cecilie,Ebbing Marta,Pedersen Anne Gro,Sulo Gerhard,Vollset Stein Emil,Braut Geir Sverre

Abstract

Abstract Background Reliable statistics on the underlying cause of death are essential for monitoring the health in a population. When there is insufficient information to identify the true underlying cause of death, the death will be classified using less informative codes, garbage codes. If many deaths are assigned a garbage code, the information value of the cause-of-death statistics is reduced. The aim of this study was to analyse the use of garbage codes in the Norwegian Cause of Death Registry (NCoDR). Methods Data from NCoDR on all deaths among Norwegian residents in the years 1996–2019 were used to describe the occurrence of garbage codes. We used logistic regression analyses to identify determinants for the use of garbage codes. Possible explanatory factors were year of death, sex, age of death, place of death and whether an autopsy was performed. Results A total of 29.0% (290,469/1,000,128) of the deaths were coded with a garbage code; 14.1% (140,804/1,000,128) with a major and 15.0% (149,665/1,000,128) with a minor garbage code. The five most common major garbage codes overall were ICD-10 codes I50 (heart failure), R96 (sudden death), R54 (senility), X59 (exposure to unspecified factor), and A41 (other sepsis). The most prevalent minor garbage codes were I64 (unspecified stroke), J18 (unspecified pneumonia), C80 (malignant neoplasm with unknown primary site), E14 (unspecified diabetes mellitus), and I69 (sequelae of cerebrovascular disease). The most important determinants for the use of garbage codes were the age of the deceased (OR 17.4 for age ≥ 90 vs age < 1) and death outside hospital (OR 2.08 for unknown place of death vs hospital). Conclusion Over a 24-year period, garbage codes were used in 29.0% of all deaths. The most important determinants of a death to be assigned a garbage code were advanced age and place of death outside hospital. Knowledge of the national epidemiological situation, as well as the rules and guidelines for mortality coding, is essential for understanding the prevalence and distribution of garbage codes, in order to rely on vital statistics.

Funder

University of Bergen

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

Reference33 articles.

1. World Health Organization. 2014. Civil registration: why counting births and deaths is important. https://www.who.int/news-room/fact-sheets/detail/civil-registration-why-counting-births-and-deaths-is-important. Accessed 19 Nov 2021.

2. Iburg KM, Mikkelsen L, Adair T, Lopez AD. Are cause of death data fit for purpose? Evidence from 20 countries at different levels of socio-economic development. PLoS One. 2020;15(8):e0237539.

3. World Health Organization. International Statistical Classification of Diseases and Related Health Problems (ICD-10), vol 2, 5th ed. Geneva: WHO Press; 2016.

4. World Health Organization. International Statistical Classification of Diseases and Related Health Problems (ICD-10), vol 1, 5th ed. Geneva: WHO Press; 2016.

5. Naghavi M, Makela S, Foreman K, O'Brien J, Pourmalek F, Lozano R. Algorithms for enhancing public health utility of national causes-of-death data. Popul Health Metrics. 2010;8:9.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3