How predictive of future healthcare utilisation and mortality is data-driven population segmentation based on healthcare utilisation and chronic condition comorbidity?

Author:

Gartner Andrea,Daniel Rhian,Slyne Ciarán,Nnoaham Kelechi Ebere

Abstract

Abstract Background In recent years data-driven population segmentation using cluster analyses of mainly health care utilisation data has been used as a proxy of future health care need. Chronic conditions patterns tended to be examined after segmentation but may be useful as a segmentation variable which, in combination with utilisation could indicate severity. These could further be of practical use to target specific clinical groups including for prevention. This study aimed to assess the ability of data-driven segmentation based on health care utilisation and comorbidities to predict future outcomes: Emergency admission, A&E attendance, GP practice contacts, and mortality. Methods We analysed record-linked data for 412,997 patients registered with GP practices in 2018-19 in Cwm Taf Morgannwg University Health Board (CTM UHB) area within the Secure Anonymised Information Linkage (SAIL) Databank. We created 10 segments using k-means clustering based on utilisation (GP practice contacts, prescriptions, emergency and elective admissions, A&E and outpatients) and chronic condition counts for 2018 using different variable compositions to denote need. We assessed the characteristics of the segments. We employed a train/test scheme (80% training set) to compare logistic regression model predictions with observed outcomes on follow-up in 2019. We assessed the area under the ROC curve (AUC) for models with demographic variables, with and without the segments, as well as between segmentation implementations (with/without comorbidity and primary care data). Results Adding the segments to the model with demographic covariates improved the prediction for all outcomes. For emergency admissions this increased discrimination from AUC 0.65 (CI 0.64–0.65) to 0.73 (CI 0.73–0.74). Models with the segments only performed nearly as well as the full models. Excluding comorbidity showed reduced predictive ability for mortality (similar otherwise) but most pronounced reduction when excluding all primary care variables. Conclusions This shows that the segments have satisfactory predictive ability, even for varied outcomes and a broad range of events and conditions used in the segmentation. It suggests that the segments can be a useful tool in helping to identify specific groups of need to target with anticipatory care. Identification may be refined with selected diagnoses or more specialised tools such as risk stratification.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3