Abstract
Abstract
Background
The spread of misinformation of all types threatens people’s safety and interrupts resolutions. COVID-19 vaccination has been a widely discussed topic on social media platforms with numerous misleading and fallacious information. This false information has a critical impact on the safety of society as it prevents many people from taking the vaccine, decelerating the world’s ability to go back to normal. Therefore, it is vital to analyze the content shared on social media platforms, detect misinformation, identify aspects of misinformation, and efficiently represent related statistics to combat the spread of misleading information about the vaccine. This paper aims to support stakeholders in decision-making by providing solid and current insights into the spatiotemporal progression of the common misinformation aspects of the various available vaccines.
Methods
Approximately 3800 tweets were annotated into four expert-verified aspects of vaccine misinformation obtained from reliable medical resources. Next, an Aspect-based Misinformation Analysis Framework was designed using the Light Gradient Boosting Machine (LightGBM) model, which is one of the most advanced, fast, and efficient machine learning models to date. Based on this dataset, spatiotemporal statistical analysis was performed to infer insights into the progression of aspects of vaccine misinformation among the public. Finally, the Pearson correlation coefficient and p-values are calculated for the global misinformation count against the vaccination counts of 43 countries from December 2020 until July 2021.
Results
The optimized classification per class (i.e., per an aspect of misinformation) accuracy was 87.4%, 92.7%, 80.1%, and 82.5% for the “Vaccine Constituent,” “Adverse Effects,” “Agenda,” “Efficacy and Clinical Trials” aspects, respectively. The model achieved an Area Under the ROC Curve (AUC) of 90.3% and 89.6% for validation and testing, respectively, which indicates the reliability of the proposed framework in detecting aspects of vaccine misinformation on Twitter. The correlation analysis shows that 37% of the countries addressed in this study were negatively affected by the spread of misinformation on Twitter resulting in reduced number of administered vaccines during the same timeframe.
Conclusions
Twitter is a rich source of insight on the progression of vaccine misinformation among the public. Machine Learning models, such as LightGBM, are efficient for multi-class classification and proved reliable in classifying vaccine misinformation aspects even with limited samples in social media datasets.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference28 articles.
1. Vaccination Rates, Approvals & Trials by Country – COVID19 Vaccine Tracker [Internet]. Available from: https://covid19.trackvaccines.org/trials-vaccines-by-country/. Cited 28 Mar 2022.
2. Marsh S. The history of Covid vaccine development | Coronavirus | The Guardian [Internet]. 2021. https://www.theguardian.com/world/2021/dec/08/the-history-of-covid-vaccine-development.
3. COVID-19 vaccinations vs. COVID-19 deaths, Dec 1, 2020 to Jul 1, 2021 [Internet]. Available from: https://ourworldindata.org/grapher/covid-vaccinations-vs-covid-death-rate?tab=table&time=2020-12-01..2021-07-01&country=FRA~DEU~ITA~GBR~USA~CAN~JPN~BRA~AUS~ZAF. Cited 28 Mar 2022.
4. Taylor CA, Whitaker M, Anglin O, Milucky J, Patel K, Pham H, et al. Morbidity and Mortality Weekly Report COVID-19-Associated Hospitalizations Among Adults During SARS-CoV-2 Delta and Omicron Variant Predominance, by Race/Ethnicity and Vaccination Status-COVID-NET, 14 States. 2022; Available from: https://www.medrxiv.org/content/10.1101/2021.08.27.21262356v1. Cited 20 May 2022.
5. COVID Vax Opponents and Rigid Proponents...Are Both Anti-Science? | MedPage Today [Internet]. Available from: https://www.medpagetoday.com/infectiousdisease/covid19vaccine/92413. Cited 28 Mar 2022.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献