The impact of PM2.5 and its constituents on gestational diabetes mellitus: a retrospective cohort study

Author:

Liu Weiqi,Zou Haidong,Liu Weiling,Qin Jiangxia

Abstract

Abstract Background There is increasing evidence that exposure to PM2.5 and its constituents is associated with an increased risk of gestational diabetes mellitus (GDM), but studies on the relationship between exposure to PM2.5 constituents and the risk of GDM are still limited. Methods A total of 17,855 pregnant women in Guangzhou were recruited for this retrospective cohort study, and the time-varying average concentration method was used to estimate individual exposure to PM2.5 and its constituents during pregnancy. Logistic regression was used to assess the relationship between exposure to PM2.5 and its constituents and the risk of GDM, and the expected inflection point between exposure to PM2.5 and its constituents and the risk of GDM was estimated using logistic regression combined with restricted cubic spline curves. Stratified analyses and interaction tests were performed. Results After adjustment for confounders, exposure to PM2.5 and its constituents (NO3, NH4+, and OM) was positively associated with the risk of GDM during pregnancy, especially when exposure to NO3 and NH4+ occurred in the first to second trimester, with each interquartile range increase the risk of GDM by 20.2% (95% CI: 1.118–1.293) and 18.2% (95% CI. 1.107–1.263), respectively. The lowest inflection points between PM2.5, SO42−, NO3, NH4+, OM, and BC concentrations and GDM risk throughout the gestation period were 18.96, 5.80, 3.22, 2.67, 4.77 and 0.97 µg/m3, respectively. In the first trimester, an age interaction effect between exposure to SO42−, OM, and BC and the risk of GDM was observed. Conclusions This study demonstrates a positive association between exposure to PM2.5 and its constituents and the risk of GDM. Specifically, exposure to NO3, NH4+, and OM was particularly associated with an increased risk of GDM. The present study contributes to a better understanding of the effects of exposure to PM2.5 and its constituents on the risk of GDM.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3