Author:
Yusuf Mohamed,Montgomery Gallin,Hamer Mark,McPhee Jamie,Cooper Rachel
Abstract
Abstract
Background
Muscle weakness is a key criterion for important age-related conditions, including sarcopenia and frailty. Research suggests lower childhood socioeconomic position (SEP) may be associated with muscle weakness in later life but there is little evidence on associations in younger adults closer to peak muscle strength. We aimed to examine relationships between indicators of SEP in childhood and adulthood and grip strength at age 46y.
Methods
We examined 7,617 participants from the 1970 British Cohort Study with grip strength measurements at 46y. We used sex-specific linear regression models to test associations between five different indicators of SEP in childhood and adulthood (paternal occupational class and parental education levels at age 5 and own occupational class and education level at age 46) and maximum grip strength. Models were adjusted for birth weight, BMI in childhood and adulthood, adult height, disability in childhood, leisure-time physical activity in childhood and adulthood, sedentary behaviour in childhood and adulthood, occupational activity and smoking at age 46.
Results
Among women, lower SEP in childhood and adulthood was associated with weaker grip strength even after adjustments for covariates. For example, in fully-adjusted models, women whose mothers had no qualifications at age five had mean grip strength 0.99 kg (95% CI: -1.65, -0.33) lower than women whose mothers were educated to degree and higher. Among men, lower levels of father’s education and both adult SEP indicators were associated with stronger grip. The association between own occupational class and grip strength deviated from linearity; men in skilled-manual occupations (i.e. the middle occupational group) had stronger grip than men in the highest occupational group (Difference in means: 1.33 kg (0.60, 2.06)) whereas there was no difference in grip strength between the highest and lowest occupational groups. Adjustment for occupational activity largely attenuated these associations.
Conclusion
Findings highlight the need to identify age and sex-specific interventions across life to tackle inequalities in important age-related conditions related to weakness.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference44 articles.
1. McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: The foundation for the National Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med Sci. 2014;69:576–83.
2. den Ouden MEM, Schuurmans MJ, Arts IEMA, van der Schouw YT. Physical performance characteristics related to disability in older persons: A systematic review. Maturitas. 2011;69:208–19.
3. Cooper R, Kuh D, Cooper C, Gale CR, Lawlor DA, Matthews F, et al. Objective measures of physical capability and subsequent health: A systematic review. Age Ageing. 2011;40:14–23.
4. Cooper R, Kuh D, Hardy R. Mortality Review Group, on behalf of the FALCon and HALCyon study teams. Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ. 2010;341:c4467-7.
5. Celis-Morales CA, Welsh P, Lyall DM, Steell L, Petermann F, Anderson J, et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. 2018;10.